精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(6,0)(如图1).
(1)当α=60°时,△CBD的形状是
 

(2)当AH=HC时,求直线FC的解析式;
(3)当α=90°时,(如图2).请探究:经过点D,且以点B为顶点的抛物线,是否经过矩形CFED的对称中心M,并说明理由.
分析:(1)可利用旋转前后对应线段相等得出BC=CD,∠BCD=60°,所以△CBD为等边三角形;
(2)可利用勾股定理求出H点坐标,从而求出FC的解析式;
(3)因为已知抛物线顶点的坐标,故而设y=a(x-6)2+4,把点D坐标代入可求出a值.然后可求出函数解析式,然后再把M点坐标代入检验.
解答:解:(1)∵图形旋转后BC=CD,∠BCD=∠α=60°
∴△BCD是等边三角形;

(2)设AH=x,则HB=AB-AH=6-x,
依题意可得:AB=OC=6,BC=OA=4,
在Rt△BHC中,HC2=BC2+HB2
即x2-(6-x)2=16,
解得x=
13
3

∴H(
13
3
,4).
设y=kx+b,把H(
13
3
,4),C(6,0)代入y=kx+b,
13
3
k+b=4
6k+b=0

解得
k=-
12
5
b=
72
5

∴y=-
12
5
x+
72
5


(3)抛物线顶点为B(6,4),
设y=a(x-6)2+4,
把D(10,0)代入得:a=-
1
4

∴y=-
1
4
(x-6)2+4(或y=-
1
4
x2+3x-5).
依题可得,点M坐标为(8,3),
把x=8代入y=-
1
4
(x-6)2+4,得y=3.
∴抛物线经过矩形CFED的对称中心M.
点评:本题为关于旋转的综合题.考查了等边三角形的判定、一次函数解析式的确定、矩形的性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案