精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两家超市同价销售同一款可拆分式驱蚊器,1套驱蚊器由1个加热器和1瓶电热蚊香液组成.电热蚊香液作为易耗品可单独购买,1瓶电热蚊香液的售价是1套驱蚊器的.已知电热蚊香液的利润率为20%,整套驱蚊器的利润率为25%.张阿姨从甲超市买了1套这样的驱蚊器,并另外买了4瓶电热蚊香液,超市从中共获利10元.

(1)求1套驱蚊器和1瓶电热蚊香液的售价;

(2)为了促进该款驱蚊器的销售,甲超市打8.5折销售,而乙超市采用的销售方法是顾客每买1套驱蚊器送1瓶电热蚊香液.在这段促销期间,甲超市销售2000套驱蚊器,而乙超市在驱蚊器销售上获得的利润不低于甲超市的1.2倍.问乙超市至少销售多少套驱蚊器?

【答案】(1)、驱蚊器售价30元,电热蚊香液的售价6元;(2)、3600

【解析】

试题分析:(1)、设1套驱蚊器售价5x元,1瓶电热蚊香液的售价x元,根据题意列出方程解答即可;

(2)、设乙超市销售x套驱蚊器,根据乙超市在驱蚊器销售上获得的利润不低于甲超市的1.2倍列出方程解答即可.

试题解析:(1)、设1套驱蚊器售价5x元,1瓶电热蚊香液的售价x元;

解得x=6,

所以设1套驱蚊器售价30元,1瓶电热蚊香液的售价6元.

(2)、设乙超市销售x套驱蚊器. W=2000×(30×0.8524)=3000元;

W=x×(3024)x×5=x 由题意知WW 解得x3600.

乙超市至少销售3600套驱蚊器.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.

(1)求证:BG=AE;
(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)

①求证:BG⊥GE;
②设DG与AB交于点M,若AG:AE=3:4,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,ACBD是对角线。将DCB绕着点D顺时针旋转45°得到DGHHGAB于点E,连接DEAC于点F,连接FG。则下列结论:

①四边形AEGF是菱形 ②△AEDGED

③∠DFG=112.5° ④BC+FG=1.5

其中正确的结论是( )

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的对角线ACBD相交于点OEAC上一点,过点AAGEB,垂足为GAGBDF,则OE=OF

1请证明0E=OF

2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点EAC的延长线上,AGEBAG EB的延长线于 GAG的延长线交DB的延长线于点F,其他条件不变,则仍有OE=OF.问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.
(1)若AC=6,BC=10,求⊙O的半径.
(2)过点E作弦EF⊥AB于M,连接AF,若∠AFE=2∠ABC,求证:四边形ACEF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABACADABC的角平分线,DEABDFAC,垂足分别为EF,则下列四个结论:①AD上任意一点到点CB的距离相等;②AD上任意一点到ABAC的距离相等;③BDCDADBC④∠BDECDF.其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(0,2),AOB为等边三角形,P是x轴上一个动点(不与原O重合),以线段AP为一边在其右侧作等边三角形APQ.

(1)求点B的坐标;

(2)在点P的运动过程中,ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.

(3)连接OQ,当OQAB时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边A1C1C2的周长为1,作C1D1A1C2D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边A2C2C3;作C2D2A2C3D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边A3C3C4且点A1A2A3都在直线C1C2同侧,如此下去,则A1C1C2A2C2C3A3C3C4AnCnCn+1的周长和为______.(n≥2,且n为整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)直线y=kx+4经过点(1,2),求不等式kx+4≥0的解集.

(2)x取哪些正整数时,不等式 x+3>6 2x-1<10 都成立

查看答案和解析>>

同步练习册答案