8£®ÒÑÖªÖ±Ïßln£ºy=-$\frac{n+1}{n}$x+$\frac{1}{n}$£¨nÊDz»ÎªÁãµÄ×ÔÈ»Êý£©£¬µ±n=1ʱ£¬Ö±Ïßl1£ºy=-2x+1ÓëxÖáºÍyÖá·Ö±ð½»ÓÚµãA1ºÍB1£¬Éè¡÷A1OB1£¨ÆäÖÐOÊÇƽÃæÖ±½Ç×ø±êϵµÄÔ­µã£©µÄÃæ»ýΪS1£»µ±n=2ʱ£¬Ö±Ïßl2£ºy=-$\frac{3}{2}$x+$\frac{1}{2}$ÓëxÖáºÍyÖá·Ö±ð½»ÓÚµãA2ºÍB2£¬Éè¡÷A2OB2µÄÃæ»ýΪS2£»¡­ÒÀ´ËÀàÍÆ£¬Ö±ÏßlnÓëxÖáºÍyÖá·Ö±ð½»ÓÚµãAnºÍBn£¬Éè¡÷AnOBnµÄÃæ»ýΪSn£®ÔòS1+S2+S3+¡­+S2016µÄÖµÊÇ$\frac{2016}{4034}$£®£®

·ÖÎö ·Ö±ðÇóµÃ¡÷A1OB1£¬¡÷A2OB2£¬ÒÔ¼°¡÷AnBnCnµÄÃæ»ý£¬×ܽá¹æÂÉ£®¼´¿ÉÇóµÃ£®

½â´ð ½â£ºy=-2x+1ÖзֱðÁîx=0£¬y=0£¬½âµÃ£ºy=1£¬x=$\frac{1}{2}$£¬¼´Ö±ÏßÓëxÖáºÍyÖá½»µãA1ºÍB1£¬·Ö±ðÊÇ£¨$\frac{1}{2}$£¬0£©£¨0£¬1£©£®Ôò¡÷A1OB1£¨ÆäÖÐOÊÇƽÃæÖ±½Ç×ø±êϵµÄÔ­µã£©µÄÃæ»ýΪ$\frac{1}{2}$¡Á1¡Á$\frac{1}{2}$£®
ͬÀí¡÷A2OB2µÄÃæ»ýΪ£º$\frac{1}{2}$¡Á$\frac{1}{2}$¡Á$\frac{1}{3}$£»
¡÷AnOBnµÄÃæ»ýÊÇ$\frac{1}{2}$¡Á$\frac{1}{n}$¡Á$\frac{1}{n+1}$£®
ÔòS1+S2+¡­+S2016µÄÖµ$\frac{1}{2}¡Á1¡Á\frac{1}{2}+\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{1}{3}+¡­+\frac{1}{2}¡Á\frac{1}{2016}¡Á\frac{1}{2017}$=$\frac{1}{2}¡Á£¨1-\frac{1}{2017}£©=\frac{2016}{4034}$£¬
¹Ê´ð°¸Îª£º$\frac{2016}{4034}$£®

µãÆÀ ´ËÌ⿼²é·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µãÎÊÌ⣬¹Ø¼üÊÇÕýÈ·Çó³ö¸÷¸öÈý½ÇÐεÄÃæ»ý£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬½«¡÷ABCÈƶ¥µãCÐýתµÃµ½¡÷A¡äB¡äC£¬ÇÒµãB¸ÕºÃÂäÔÚA¡äB¡äÉÏ£¬Èô¡ÏA=25¡ã£¬¡ÏBCA¡ä=45¡ã£¬Ôò¡ÏABCµÈÓÚ£¨¡¡¡¡£©
A£®40¡ãB£®55¡ãC£®65¡ãD£®70¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®½«³¤·½ÐÎֽƬABCDµÄ¡ÏCÑØ×ÅGFÕÛµþ£¨µãFÔÚBCÉÏ£¬²»ÓëB£¬CÖغϣ©£¬Ê¹µãCÂäÔÚ³¤·½ÐÎÄÚ²¿µãE´¦£¬ÈôFHƽ·Ö¡ÏEFB£¬Ôò¡ÏGFHµÈÓÚ£¨¡¡¡¡£©
A£®80¡ãB£®85¡ãC£®90¡ãD£®95¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èôa=2b£¬Ôò$\frac{{a}^{2}-{b}^{2}}{{a}^{2}-ab}$µÄÖµÊÇ$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÒ»´Îº¯Êýy=kx+3µÄͼÏó¾­¹ýµã£¨2£¬7£©£¬Ôòk=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ1£¬ÒÑÖª£ºËıßÐÎABCDÊÇ¡ÑOµÄÄÚ½ÓËıßÐΣ¬Á¬½áAC£¬BD£¬Èô¡ÏDCA+¡ÏDCB=180¡ã£®
£¨1£©ÇóÖ¤£ºAD=BD£»
£¨2£©Èçͼ2£¬Èô¡ÏBCA=60¡ã£¬ÇóÖ¤£ºCD+BC=AC£»
£¨3£©Èçͼ3£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýA×÷AE¡ÍAC½»¡ÑOÓÚE£¬PΪ»¡ADÉÏÒ»µã£¬Á¬½ÓBP¡¢AP¡¢BPÓëAC½»ÓÚFµã£¬¹ýA×÷AH¡ÍPBÓÚH£¬ÈôCD=AE£¬FH£ºBH=4£º21£¬¡ÑO°ë¾¶Îª5£¬ÇóÏÒAPµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Çë°ÑÏÂÁдíÎó˵·¨µÄÐòºÅÌîµ½ºóÃæµÄºáÏßÉϢڢۢܢݢޣ®
¢ÙËùÓеÄÓÐÀíÊý¶¼ÄÜÓÃÊýÖáÉϵĵã±íʾ
¢Ú·ûºÅ²»Í¬µÄÁ½¸öÊý»¥ÎªÏà·´Êý
¢ÛÓÐÀíÊý·ÖΪÕýÊýºÍ¸ºÊý
¢ÜÁ½ÊýÏà¼Ó£¬ºÍÒ»¶¨´óÓÚÈκÎÒ»¸ö¼ÓÊý
¢ÝÁ½ÊýÏà¼õ£¬²îÒ»¶¨Ð¡ÓÚ±»¼õÊý
¢Þ×î´óµÄ¸ºÓÐÀíÊýÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ë«ÇúÏßy=-$\frac{1}{x}$ÉϵÄÁ½¸öµãΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬ÇÒx1£¾x2£¾0£¬Ôòy1Óëy2µÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®y1£¾y2B£®y1£¼y2C£®y1=y2D£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª$\frac{a+2b}{7}$=$\frac{3b-2c}{5}$=$\frac{c-2a}{3}$£¬Ôò$\frac{3a+b-2c}{2a-5b+5c}$µÄÖµµÈÓÚ$\frac{13}{21}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸