精英家教网 > 初中数学 > 题目详情
精英家教网如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC.
(1)求△ABC的面积;
(2)求AC边上的高.
分析:(1)三角形的面积等于四个小正方形的面积减去△ABC之外的三个三角形的面积;
(2)先求出BC边的长,再利用面积就可求出AC边上的高.
解答:解:(1)S△ABC=1×4-
1
2
×1×2-
1
2
×1×1-
1
2
×1×2=
3
2


(2)AC=
12+22
=
5

设高为h,
1
2
AC•h=
3
2

解得h=
3
5
5
点评:本题主要考查图象识别,从图象中分析出面积的计算,题目得以解决;另外,勾股定理也是考查点之一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是(  )
A、
3
2
2
B、
3
10
5
C、
3
5
5
D、
4
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高长度为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC.求△ABC的面积.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,小正方形边长为1,则△ABC中AC边上的高等于
3
5
5
3
5
5

查看答案和解析>>

同步练习册答案