精英家教网 > 初中数学 > 题目详情

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;

(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

 

【答案】

(1)详见解析;(2)6

【解析】

试题分析:(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;

(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.

试题解析:(1)连接OC,

∵OA=OC,

∴∠OCA=∠OAC,

∵AC平分∠PAE,

∴∠DAC=∠CAO,

∴∠DAC=∠OCA,

∴PB∥OC,

∵CD⊥PA,

∴CD⊥OC,CO为⊙O半径,

∴CD为⊙O的切线;

(2)过O作OF⊥AB,垂足为F,

∴∠OCD=∠CDA=∠OFD=90°,

∴四边形DCOF为矩形,

∴OC=FD,OF=CD.

∵DC+DA=6,

设AD=x,则OF=CD=6-x,

∵⊙O的直径为10,

∴DF=OC=5,

∴AF=5-x,

在Rt△AOF中,由勾股定理得AF2+OF2=OA2.

即(5-x)2+(6-x)2=25,

化简得x2-11x+18=0,

解得x1=2,x2=9.

∵CD=6-x大于0,故x=9舍去,

∴x=2,

从而AD=2,AF=5-2=3,

∵OF⊥AB,由垂径定理知,F为AB的中点,

∴AB=2AF=6.

考点:1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•昌平区一模)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.
(1)求证:CD是⊙O的切线;
(2)若AD:DC=1:3,AB=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC=4,AC=5,求⊙O的直径的AE.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(安徽芜湖卷)数学 题型:解答题

(本小题满分12分)
如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。
(1)求证:CD为⊙0的切线;
(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.

查看答案和解析>>

科目:初中数学 来源:2012届北京门头沟中考二模数学试卷(带解析) 题型:解答题

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径.点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

【小题1】求证:CD为⊙O的切线;
【小题2】若DC+DA=6,⊙O的直径为10,求AB的长.

查看答案和解析>>

同步练习册答案