精英家教网 > 初中数学 > 题目详情
(2013年浙江义乌12分)如图1,已知(x>)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.

(1)如图2,连结BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.
解:(1)
(2)如图1,∵四边形BQNC是菱形,
∴BQ=BC=NQ,∠BQC=∠NQC。
∵AB⊥BQ,C是AQ的中点,∴BC=CQ=AQ。∴∠BQC=60°,∠BAQ=30°。
在△ABQ和△ANQ中,∵,∴△ABQ≌△ANQ(SAS)。
∴∠BAQ=∠NAQ=30°。∴∠BAO=30°。
∵S四边形BQNC=,∴BQ=2。∴AB=BQ=。∴OA=AB=3。
又∵P点在反比例函数的图象上,∴P点坐标为(3,2)。
(3)∵OB=1,OA=3,∴AB=
∵△AOB∽△DBA,∴。∴BD=3
①如图2,当点Q在线段BD上,

∵AB⊥BD,C为AQ的中点,∴BC=AQ。
∵四边形BNQC是平行四边形,∴QN=BC,CN=BQ,CN∥BD。
,∴BQ=CN=BD=
∴AQ=2
∴C四边形BQNC=
②如图3,当点Q在线段BD的延长线上,

∵AB⊥BD,C为AQ的中点,
∴BC=CQ=AQ。
∴平行四边形BNQC是菱形,BN=CQ,BN∥CQ。
。∴BQ=3BD=9

∴C四边形BNQC=2AQ=
(1)根据同底等高的两个三角形的面积相等即可求出△PAB的面积。
(2)首先求出∠BQC=60°,∠BAQ=30°,然后根据SAS证明△ABQ≌△ANQ,进而求出∠BAO=30°,由S四边形BQNC=求出OA=3,于是P点坐标求出。
(3)分两类进行讨论,当点Q在线段BD上,根据题干条件求出AQ的长,进而求出四边形的周长,当点Q在线段考点:
BD的延长线上,依然根据题干条件求出AQ的长,再进一步求出四边形的周长。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

反比例函数的图象经过点(2,﹣1),则k的值为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.

(1)如果b=﹣2,求k的值;
(2)试探究k与b的数量关系,并写出直线OD的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A是反比例函数的图像上的一点,AB⊥x轴于点B,且△ABO的面积是3,则k的值是(      )
A.3B.-3C.-6D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图像如图所示,那么到达乙地时邮箱剩余油量是        升.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年四川泸州4分)如图,点P1(x1,y1),点P2(x2,y2),…,点Pn(xn,yn)在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△PnAn﹣1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,An﹣1An都在x轴上(n是大于或等于2的正整数),则点P3的坐标是    ;点Pn的坐标是     (用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知直线y=mx与双曲线的一个交点坐标为(3,4),则它们的另一个交点坐标是
A.(﹣3,4)B.(﹣4,﹣3)C.(﹣3,﹣4)D.(4,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点O是平面直角坐标系的原点,直线y=﹣x+m+n与双曲线交于两个不同的点A(m,n)(m≥2)和B(p,q).直线y=﹣x+m+n与y轴交于点C,求△OBC的面积S的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数与y=x﹣2图象交点的横坐标分别为a,b,则的值为     

查看答案和解析>>

同步练习册答案