【题目】已知△ABC与△DEC是两个大小不同的等腰直角三角形.
(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;
(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.
【答案】(1)AE=DB,AE⊥DB;(2)DE=AF,DE⊥AF.
【解析】试题分析:(1)根据等腰直角三角形的性质、全等三角形的判定定理证明Rt△BCD≌Rt△ACE,根据全等三角形的性质解答;
(2)证明△EBD≌△ADF,根据全等三角形的性质证明即可.
试题解析:解:(1)AE=DB,AE⊥DB.证明如下:
∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;
(2)DE=AF,DE⊥AF.证明如下:
设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,∵BE=AD,∠EBD=∠ADF,DE=DF,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.
(1)求从袋中同时摸出的两个球都是黄球的概率;
(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD在平面直角坐标系中,点A(﹣2,0),点B(2,0),点D(0,3),点C在第一象限.
(1)求直线AD的解析式;
(2)若E为y轴上的点,求△EBC周长的最小值;
(3)若点Q在平面直角坐标系内,点P在直线AD上,是否存在以DP,DB为邻边的菱形DBQP?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据阅读材料,回答问题.
材料:如图所示,有公共端点(O)的两条射线组成的图形叫做角().如果一条射线()把一个角()分成两个相等的角(和),这条射线()叫做这个角的平分线.这时,(或).
问题:平面内一定点A在直线的上方,点O为直线上一动点,作射线,,,当点O在直线上运动时,始终保持,,将射线绕点O顺时针旋转60°得到射线.
(1)如图1,当点O运动到使点A在射线的左侧时,若平分,求的度数;
(2)当点O运动到使点A在射线的左侧,时,求的值;
(3)当点O运动到某一时刻时,,直接写出此时的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.
②先化简再求值:化简:,x=2020.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.
(1)求证:DE是⊙O的切线;
(2)若AB=10,AC=6,求BD的长;
(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数y=|x|﹣2中,自变量x可以是任意实数;
Ⅰ如表是y与x的几组对应值.
y | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
x | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m= ;
②若A(n,8),B(10,8)为该函数图象上不同的两点,则n= ;
Ⅱ如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:
①该函数的最小值为 ;
②该函数的另一条性质是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com