【题目】如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是________.
【答案】150°
【解析】
首先由OA=OB=OC,得出∠OAB+∠OBA+∠OBC+∠OCB=140°,进而由四边形内角和定理得出,∠OAB+∠ABC+∠OCB=140°,再利用四边形内角和从而可得出答案.
解:∵OA=OB=OC,
∴∠OAB=∠OBA,∠OBC=∠OCB,
∵∠ABC=∠OBA+∠OBC=70°,
∴∠OAB+∠OBA+∠OBC+∠OCB=140°,即∠OAB+∠ABC+∠OCB=140°,
又∵∠ABC+∠BCD+∠ADC+∠BAD=360°,即∠ABC+∠OCB+∠OCD+∠ADC+∠DAO+∠OAB=360°,
∵∠ADC=70°,∠OAB+∠ABC+∠OCB=140°,
∴∠DAO+∠DCO=360°-140°-70°=150°.
故答案为:150°.
科目:初中数学 来源: 题型:
【题目】某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.
(1) A商品的单价是___________元,B商品的单价是___________元;
(2) 已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元.
① 求y与x的函数关系式.
② 如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次比赛中将所有参赛同学分为四个组,其中第一组有x人,第二组比第一组的少5人,第三组比第一、二组的和少15人,第一组的2倍与第四组的和是30人.
(1)用含x的式子分别表示第二、三、四组的人数及参赛总人数;
(2)当x=10时,第四组与第三组相比,哪组的人数多?多多少人?
(3)x能否等于13,为什么?x能否等于20,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
组别 | 成绩分组 | 频数频率 | 频数 |
1 | 2 | 0.05 | |
2 | 4 | 0.10 | |
3 | 0.2 | ||
4 | 10 | 0.25 | |
5 | |||
6 | 6 | 0.15 | |
合计 | 40 | 1.00 |
根据表中提供的信息解答下列问题:
(1)频数分布表中的 , , ;
(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为 ,72分及以上为及格,预计及格的人数约为 ,及格的百分比约为 ;
(3)补充完整频数分布直方图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形 ABCD 中,AD∥BC,E 是 AB 的中点,CE 的延长线与 DA 的延长线相 交于点 F.
(1)求证:△BCE≌△AFE;
(2)连接 AC、FB,则 AC 与 FB 的数量关系是 ,位置关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, AD 为△ ABC 的中线, BE 为△ ABD 的中线.
(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度数;
(2)作△ BED 的边 BD 边上的高;
(3)若△ ABC 的面积为 20, BD=2.5,求△ BDE 中 BD 边上的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
组别 | 成绩分组 | 频数 | 频率 |
1 | 47.5~59.5 | 2 | 0.05 |
2 | 59.5~71.5 | 4 | 0.10 |
3 | 71.5~83.5 | a | 0.2 |
4 | 83.5~95.5 | 10 | 0.25 |
5 | 95.5~107.5 | b | c |
6 | 107.5~120 | 6 | 0.15 |
合计 | 40 | 1.00 |
根据表中提供的信息解答下列问题:
(1)频数分布表中的a=__________,b=__________,c=__________;
(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,102018年四川省内江市及以上为优秀,预计优秀的人数约为__________,72分及以上为及格,预计及格的人数约为__________,及格的百分比约为__________;
(3)补充完整频数分布直方图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( )
①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com