精英家教网 > 初中数学 > 题目详情
(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是(  )
分析:先求出△EFH是直角三角形,再根据勾股定理求出FH=20,再利用全等三角形的性质解答即可.
解答:解:设斜线上两个点分别为P、Q,
∵P点是B点对折过去的,
∴∠EPH为直角,△AEH≌△PEH,
∴∠HEA=∠PEH,
同理∠PEF=∠BEF,
∴∠PEH+∠PEF=90°,
∴四边形EFGH是矩形,
∴△DHG≌△BFE,HEF是直角三角形,
∴BF=DH=PF,
∵AH=HP,
∴AD=HF,
∵EH=12cm,EF=16cm,
∴FH=
EH2+EF2
=
122+162
=20cm,
∴FH=AD=20cm.
故选C.
点评:本题考查的是翻折变换及勾股定理、全等三角形的判定与性质,解答此题的关键是作出辅助线,构造出全等三角形,再根据直角三角形及全等三角形的性质解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是
O(0,0)
O(0,0)
,旋转角是
90
90
度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;
(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济宁)如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济宁)如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.

查看答案和解析>>

同步练习册答案