分析 (1)由E为AC的中点,可得AE=CE,再由条件EF=DE 可得四边形ADCF是平行四边形;
(2)根据等底等高的三角形面积相等可得平行四边形对角线分成的四个小三角形面积相等可得△CEF的面积和△CED的面积都等于△AEF的面积为3,从而可得四边形BCFD的面积为12.
解答 (1)图中的平行四边形有:平行四边形ADCF,平行四边形BDFC,
理由是:∵E为AC的中点,
∴AE=CE,
∵DE=EF,
∴四边形ADCF是平行四边形,
∴AD∥CF,AD=CF,
∵D为AB的中点,
∴AD=BD,
∴BD=CF,BD∥CF,
∴四边形BDFC是平行四边形.
(2)由(1)知四边形ADCF是平行四边形,四边形BDFC是平行四边形,
∴S△CEF=S△CED=S△AEF=3,
∴平行四边形BCFD的面积是12.
点评 此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形的判定定理,掌握平行四边形对角线分成的四个小三角形面积相等.
科目:初中数学 来源: 题型:选择题
A. | 2a2-a2+ab2的次数是2次 | B. | $\frac{{2{x^2}}}{x}$是分式 | ||
C. | $\frac{a-1}{a+1}=-1$ | D. | $\frac{{{a^2}-ab}}{{{b^2}-ab}}$=$\frac{a^2}{b^2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 第4张 | B. | 第5张 | C. | 第6张 | D. | 第7张 |
查看答案和解析>>
科目:初中数学 来源:2017届广东省佛山市顺德区九年级第一次模拟考试数学试卷(解析版) 题型:填空题
如图,等腰△ABC的周长是36cm,底边为10cm,则底角的正切值是_____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | k>0 | B. | k>-$\frac{1}{2}$ | C. | k<0 | D. | -$\frac{1}{2}$<k<0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com