精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB是⊙O的直径,弦CD⊥AB于E,F是CE上的一点,且FC=FA,延长AF交⊙O于G,连接CG.
(1)试判断△ACG的形状(按边分类),并证明你的结论;
(2)若⊙O的半径为5,OE=2,求CF•CD之值.
分析:(1)△ACG是等腰三角形,只要证明∠G=∠CAG,可以转化为证明
AD
=
AC
即可.
(2)连接AD,BC,易证△ACF∽△DCA,得到AC:CD=CF:AC,即AC2=CF•CD.再根据垂径定理得到AC2=AE2+CE2就可以求出.
解答:精英家教网解:(1)△ACG是等腰三角形.
证明如下:
∵CD⊥AB,∴
AD
=
AC
.(1分)
∴∠G=∠ACD,(2分)
∵FC=FA,
∴∠ACD=∠CAG,(3分)
∴∠G=∠CAG,
∴△ACG是等腰三角形.(4分)

(2)连接AD,BC,(5分)
由(1)知
AC
=
AD

∴AC=AD.
∴∠D=∠ACD,(6分)
∴∠D=∠G=∠CAG,
又∵∠ACF=∠DCA,
∴△ACF∽△DCA,(7分)
∴AC:CD=CF:AC,
即AC2=CF•CD,(8分)
∵CD⊥AB,(9分)
∴AC2=AE2+CE2=(5-2)2+(52-22)=30.(11分)
∴CF•CD=30.(12分)
点评:证明等腰三角形可以依据等角对等角证明;第二问中利用了相似三角形的性质和垂径定理的推论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案