分析 (1)根据已知条件,BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,可得∴∠DBF=∠DFB,∠ECF=∠EFC,因此可判断出△BDF和△CEF为等腰三角形;
(2)由(1)可得出DF=BD,CE=EF,所以得BD-CE=DE.
解答 (1)解:图中有2个等腰三角形即△BDF和△CEF,
∵BF、CF分别平分∠ABC、∠ACB的外角,
∴∠DBF=∠CBF,∠FCE=∠FCM,
∵DE∥BC,
∴∠DFB=∠CBF,∠EFC=∠FCM,
∴∠DBF=∠DFB,∠FCE=∠EFC,
∴BD=FD,EF=CE,
∴△BDF和△CEF为等腰三角形;
(2)存在:BD-CE=DE,
证明:∵DF=BD,CE=EF,
∴BD-CE=FD-EF=DE.
点评 本题主要考查了等腰三角形的性质,利用边角关系并结合等量代换来推导证明.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com