精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,对角线ACBD相交于点OAB=5,AC=6,BD=8.

(1)求证:四边形ABCD是菱形;

(2)过点AAH⊥BC于点H,求AH的长.

【答案】(1)证明见解析(2)

【解析】试题分析:(1)由平行四边形的对角线互相平分得到△AOB的两条边OA、OB的长度,则根据勾股定理的逆定理判定∠AOB=90°,即平行四边形的对角线互相垂直平分,故四边形ABCD是菱形.

(2)根据菱形的不变性,用不同方法求面积:平行四边形的面积=菱形的面积,可求解.

试题解析:(1)证明:∵在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8,

∴AO=AC=3,BO=BD=4,

∵AB=5,且32+42=52

∴AO2+BO2=AB2

∴△AOB是直角三角形,且∠AOB=90°,

∴AC⊥BD,

∴四边形ABCD是菱形;

(2)解:如图所示:

∵四边形ABCD是菱形,

∴BC=AB=5,

∵S△ABC=ACBO=BCAH,

×6×4=×5×AH,

解得:AH=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果我们想用统计图清楚地描述2014年世界人口分布比例情况,那么应选择的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).

(1)求该抛物线的解析式;

(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;

(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;

(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年淘宝网都会举办“双十一”购物狂欢节,许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售一件A商品的成本为36元,网上标价为110元.“双十一”活动当天,为了吸引买主,连续两次降价销售A商品,问平均每次降价率为多少时,才能使这件A商品的利润率为10%?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品( )件

A. 9B. 10C. 11D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(03),点Ax轴的负半轴上,点DM分别在边ABOA上,且AD=2DBAM=2MO,一次函数y=kx+b的图象过点DM,反比例函数y =的图象经过点D,与BC的交点为N

1)求反比例函数和一次函数的表达式;

2)若点P在直线DM上,且使OPM的面积与四边形OMNC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(x1 , y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是(
A.b<0
B.b>0
C.b>﹣1
D.b<﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知某小区的两幢10层住宅楼间的距离为AC="30" m,由地面向上依次为第1层、第2层、、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α

(1) 用含α的式子表示h(不必指出α的取值范围)

(2) α30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光 ?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】地球上的海洋面积约为36105.9万平方千米,用科学记数法(保留三个有效数字)表示为平方千米.

查看答案和解析>>

同步练习册答案