精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,点O是边AC上一个动点,过点O作直线//BC,分别交,外角的平分线于点EF.

1)猜想与证明,试猜想线段OEOF的数量关系,并说明理由.

2)连接AEAF,问:当点O在边AC上运动时到什么位置时,四边形AECF是矩形?并说明理由.

3)若AC边上存在一点O,使四边形AECF是正方形,猜想的形状并证明你的结论.

【答案】1OE=OF,理由见解析.

2)当点O在边AC上运动到AC中点时,四边形AECF是矩形;

理由见解析.

3ABC是直角三角形;证明见解析.

【解析】

1)根据CE平分∠ACBMNBC,找到相等的角,即∠OEC=ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO
2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.
3)利用已知条件及正方形的性质问题可解.

1)证明:∵CE是∠ACB的平分线,
∴∠ACE=BCE
MNBC
∴∠BCE=E
∴∠ACE=E
OE=OC
同理可证OC=OF
OE=OF
2)解:如图

当点O在边AC上运动到AC中点时,四边形AECF是矩形.
理由是:当OAC的中点时,AO=CO
EO=FO
∴四边形AECF是平行四边形,
CE平分∠ACBCF平分∠ACG
∴∠ECF=ACB+ACG=(∠ACB+ACG=90°
∴平行四边形AECF是矩形.

3ABC是直角三角形

理由是:∵四边形AECF是正方形,
ACEN,故∠AOM=90°
MNBC
∴∠BCA=AOM
∴∠BCA=90°
∴△ABC是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据要求,解答下列问题.

1)解方程组:

2)解下列方程组,只写出最后结果即可:

3)以上每个方程组的解中,x值与y值有怎样的大小关系?

4)观察以上每个方程组的外形特征,请你构造一个具有此特征的方程组,并用(3)中的结论快速求出其解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为正方形ABCD对角线AC上一动点,EF⊥AC且交AD于E,交CD的延长线于点G,连接CE和AG.
(1)求证:△ADG≌△CDE;
(2)当CE平分∠ACD时,求tan∠AGD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小杨一家三人随旅游团去九寨沟旅游,小杨把旅途的费用支出情况制成了如图所示的统计图.

(1)哪一部分的费用占整个支出的

(2)若他们共交给旅行社8600元,则在食宿上用去多少元?

(3)以上条件不变,这一家往返的路费共多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1PRtABC所在平面内任意一点(不在直线AC),∠ACB=90°MAB边中点.操作:以PAPC为邻边作平行四边形PADC,连结PM并延长到点E,使ME=PM,连结DE

1)请你利用图2,选择RtABC内的任意一点P按上述方法操作;

2)经历(1)之后,观察两图形,猜想线段DE和线段BC之间有怎样的数量和位置关系?请选择其中的一个图形证明你的猜想;

3)观察两图,你还可得出ACDE相关的什么结论?请说明理由.

4)若以A为坐标原点,建立平面直角坐标系,其中ACD的坐标分别为(00),(53),(42),能否在平面内找到一点M,使以ACDM为点构造成平行四边形,若不能,说明理由,若能,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在梯形ABCD中,ADBC,∠B=90°AD=24cmBC=26cm,动点P从点A出发沿AD方向向点D1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B3cm/s的速度运动.点PQ分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.

1)经过多长时间,四边形PQCD是平行四边形?

2)经过多长时间,四边形PQBA是矩形?

3)经过多长时间,当PQ不平行于CD时,有PQ=CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知A(0,-2),B(-2,1),C(3,2)

(1)求线段ABBCAC的长

(2)把ABC三点的横坐标、纵坐标都乘以2,得到ABC的坐标AB、BC、AC的长

(3)以上六条线段成比例吗?

(4)ABCABC的形状相同吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BAD,使∠BDC=30°

(1)求证:DC是⊙O的切线;

(2)AB=2,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,上一点,,垂足为,垂足为.下列四三个结论中:①;②;③;④其中正确的是____________(填序号)

查看答案和解析>>

同步练习册答案