精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.

(1)猜想直线MN与⊙O的位置关系,并说明理由;
(2)若CD=6,cos∠ACD=,求⊙O的半径.
解:(1)直线MN与⊙O的位置关系是相切。理由如下:
连接OC,

∵OA=OC,∴∠OAC=∠OCA,
∵∠CAB=∠DAC,∴∠DAC=∠OCA。∴OC∥AD。
∵AD⊥MN,∴OC⊥MN。
∵OC为半径,∴MN是⊙O切线。
(2)∵CD=6,,∴AC=10。
由勾股定理得:AD=8。
∵AB是⊙O直径,AD⊥MN,∴∠ACB=∠ADC=90°。
∵∠DAC=∠BAC,∴△ADC∽△ACB。
,即
∴AB=12.5。∴⊙O半径是×12.5=6.25。

试题分析:(1)连接OC,推出AD∥OC,从而得OC⊥MN,根据切线的判定推出即可。
(2)求出AD、AB长,证△ADC∽△ACB,得出比例式,代入求出AB长即可。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.

①、则梯形的高是     
②、若EF平分等腰梯形ABCD的周长,设BE长为,试用含的代数式表示△BEF的面积;
③、是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此BE的长;若不存在,请说明理由;
④、是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1︰2的两部分?若存在,求此时BE的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

化简:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果,那么下列结
论正确的是【   】

 

 
A.csinA= a         B.b cosB=c       C.a tanA= b        D.ctanB= b

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市。CD与AB所在直线互相平行,且都与马路两边垂直,马路宽20米,A,B相距62米,
∠A=67°,∠B=37°

(1)求CD与AB之间的距离;
(2)某人从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米
(参考数据:

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°.已知tan∠ABC=,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.

(1)求∠ABP的度数;
(2)求A,B两点间的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川眉山9分)在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.

(1)求证:△DEC∽△FDC;
(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.

查看答案和解析>>

同步练习册答案