精英家教网 > 初中数学 > 题目详情
对于任意实数x,代数式2x-x2-1的值(  )
分析:将2x-x2-1配方成的形式-(x-1)2即可得到答案.
解答:解:∵2x-x2-1=-(x2-2x+1)=-(x-1)2
∴2x-x2-1是非正数,
故选C.
点评:本题考查了配方法的应用:通过配方法把一个代数式变形为一个完全平方式,然后利用其非负数的性质解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:
 
,∴m=
 
;已知点B(-2,n)在直线y=2x-1上,求n的方法是:
 
,∴n=
 

问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先
 
,再由已知条件可得
 
.解得:
 
.∴满足已知条件的一次函数的解析式为:
 
.这个一次函数的图象与两坐标轴的交点坐标为:
 
,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,
 
的方法,叫做待定系数法.

查看答案和解析>>

科目:初中数学 来源: 题型:

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
①2+1
 
2
2×1
;  ②3+
1
3
 
2
1
3
③8+8
 
2
8×8

通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想a+b
 
2
ab

(2)学习了《二次根式》后我们可以对此猜想进行代数证明,请欣赏:
对于任意非负实数a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有当a=b时,等号成立.
(3)学习《圆》后,我们可以对这个结论进行几何验证:
如图,AB为半圆O的直径,C为半圆上的任意一点,(与A、B不重合)过点C作CD⊥AB,垂足为D,AD=a,DB=b.
根据图形证明:a+b≥2
ab
,并指出等号成立时的条件.
精英家教网
(4)蓦然回首,我们发现在上学期的《梯形的中位线》一节遇到的一个问题,此时运用这个结论解决是那样的简单:
如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为
 
cm.
(注意:包扎时背面也有带子,打结处长度忽略不计)
精英家教网

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(1999•河北)九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:______,∴m=______;已知点B(-2,n)在直线y=2x-1上,求n的方法是:______,∴n=______;
问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先______,再由已知条件可得______

查看答案和解析>>

科目:初中数学 来源:1999年河北省中考数学试卷 题型:解答题

(1999•河北)九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:    ,∴m=    ;已知点B(-2,n)在直线y=2x-1上,求n的方法是:    ,∴n=   
问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先    ,再由已知条件可得    .解得:    .∴满足已知条件的一次函数的解析式为:    .这个一次函数的图象与两坐标轴的交点坐标为:    ,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,    的方法,叫做待定系数法.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年江苏省无锡市育才中学九年级(上)期中数学试卷(解析版) 题型:解答题

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
①2+1______;  ②______③8+8______
通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想a+b______
(2)学习了《二次根式》后我们可以对此猜想进行代数证明,请欣赏:
对于任意非负实数a,b,∵,∴,∴,只有当a=b时,等号成立.
(3)学习《圆》后,我们可以对这个结论进行几何验证:
如图,AB为半圆O的直径,C为半圆上的任意一点,(与A、B不重合)过点C作CD⊥AB,垂足为D,AD=a,DB=b.
根据图形证明:,并指出等号成立时的条件.

(4)蓦然回首,我们发现在上学期的《梯形的中位线》一节遇到的一个问题,此时运用这个结论解决是那样的简单:
如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为______

查看答案和解析>>

同步练习册答案