试题分析:(1)连接AO、BO,过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F,则OF⊥AB.由OA =" OB" = 5m,AB = 8m,即可得到
,∠AOB = 2∠AOF.在Rt△AOF中,根据∠AOF的正弦函数即可求得∠AOF 的度数,从而求得结果;
(2)先根据勾股定理求的OF,即可得到FN,再根据等腰梯形的性质可得AE =" FN" = 3m,DC =" AB" + 2DE.解Rt△ADE即可得到DE = 2m,DC = 12m,根据
即可求得结果.
(1)连接AO、BO,过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F,则OF⊥AB.
∵OA =" OB" = 5m,AB = 8m,
∴
,∠AOB = 2∠AOF.
在Rt△AOF中,sin∠AOF =
=" 0.8" = sin53°.
∴∠AOF = 53°,则∠AOB = 106°.即弧AB度数为106°;
(2)∵
,由题意得MN = 1m,
∴
.
∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,
∴AE =" FN" = 3m,DC =" AB" + 2DE.
在Rt△ADE中,
,
∴DE = 2m,DC = 12m.
∴
答:U型槽的横截面积约为20m
2.
点评:根据题意作出辅助线,构造出直角三角形及等腰梯形,再利用勾股定理进行求解是解此题的关键.