【题目】如图 1,已知线段 AB=12 cm,点 C 为线段 AB 上的一动点(点 C 不与 A,B 重合),点D,E 分别是 AC 和 BC 的中点.
(1)若点 C 恰好是 AB 的中点,则 DE= cm;
(2)若 AC=4 cm,求 DE的长;
(3)试说明当点C在线段 AB 上运动时,DE 的长不变;
(4)如图 2,已知∠AOB=120°,在∠AOB 的内部任画一条射线 OC.
①请分别画出∠AOC 和∠COB 的平分线 OD,OE(不要求尺规作图);
②说明∠DOE 的度数与射线 OC 的位置无关.
【答案】(1)6;(2)6cm;(3)证明见解析;(4)①答案见解析;②证明见解析.
【解析】
(1)根据中点的概念,通过线段的和差倍分进行计算即可得解;
(2)根据中点的概念,通过线段的和差倍分进行计算即可得解;
(3)根据中点的概念,通过线段的和差倍分进行计算即可得解;
(4)根据角平分线的概念,通过角的和差倍分进行计算即可得解.
(1)∵C是AB中点,AB=12cm,
∴,
∵点D,E分别是AC和BC的中点,
∴,,
∵,
∴;
(2)∵,,
∴,
∵点,分别是和的中点,
∴,,
∴;
(3)∵点,分别是和的中点,
∴,,
∴,
∴当点在线段上运动时,的长不变且为;
(4)①如图,
射线与为所求的角平分线.
②∵与分别平分和,
∴,,
∴,
∵,
∴,
∴的度数与射线的位置无关.
科目:初中数学 来源: 题型:
【题目】如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.
(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;
(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;
(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;
(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠A=60°,BC=6,直线MN∥BC,且分别交边AB,AC于点M,N,已知直线MN将△ABC分为△AMN和梯形MBCN面积之比为5:1的两部分,如果将线段AM绕着点A旋转,使点M落在边BC上的点D处,那么BD=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个如图所示的曲尺形框,框和框,用它们分别可以框住下表中的三个数(如图所给示例),
(1)若被框框住的三个数中最小的数为.若这三个数的和是,问的值是否存在?若存在,求出的值;若不存在,说明理由;
(2)若被框框住的三个数中最小的数为.若这三个数的和是,问的值是否存在?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为_____.(结果不取近似值)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=x-3与x轴,y轴分别交于点A和点B.
(1)求点A和点B的坐标;
(2)将直线l1向上平移6个单位后得到直线l2,求直线l2的函数解析式;
(3)设直线l2与x轴的交点为M,则△MAB的面积是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC为等边三角形,点D,E为直线BC上两动点,且BD=CE. 点F,点E关于直线AC成轴对称,连接AE,顺次连接A,D,F.
(1)如图1,若点D,点E在边BC上,试判断△ADF的形状并说明理由;
(2)如图2,若点D,点E在边BC外,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(7,0),C(0,4),点D的坐标为(5,0),点P在BC边上运动. 当△ODP是腰长为5的等腰三角形时,点P的坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,已知AD=4,AB=3,点P是直线AD上的一点,PE⊥AC,PF⊥BD,E,F分别是垂足,AG⊥BD与点G,
(1) 如图①点P在线段AD上,求PE+PF的值;
(2) 如图②点P在直线AD上,求PEPF的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com