精英家教网 > 初中数学 > 题目详情

抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点分别代表的点数是1、2、3、4).每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).则点P在反比例函数y=数学公式图象上的概率是________.


分析:首先根据题意画树状图,然后根据树状图求得所有等可能的结果与点P在反比例函数y=图象上的情况数,再利用概率公式求解即可求得答案.
解答:画树状图得:

∴一共有16种等可能的结果,点P在反比例函数y=图象上的有(2,3),(3,2),
∴点P在反比例函数y=图象上的概率是=
故答案为:
点评:此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点分别代表的点数是1、2、3、4).每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).则点P在反比例函数y=
6x
图象上的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).
(1)求点P落在正方形面上(含边界,下同)的概率;
(2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正精英家教网方形面上的概率为
14
?若存在,指出其中的一种平移方式;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网精英家教网(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:
抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为
34
?若存在,指出其中的一种平移方式;若不存在,请说明理由;
(二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD
面上的概率为
34
;若存在,指出其中的一种平移方式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点分别代表的点数是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).则点P在反比例函数y=
4x
图象上的概率是
 

查看答案和解析>>

同步练习册答案