精英家教网 > 初中数学 > 题目详情
已知:等腰△ABC中,AB=AC=13,BC=10,求底角∠B的正弦、余弦、正切值。
底角∠B的正弦为余弦为、正切值为
作AD⊥AC,交BC于点D,将△ABC分割成两个直角三角形,进而在Rt△ABD中,由勾股定理可得AD的值,根据三角函数的定义,可得底角∠B的正弦、余弦、正切值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【   】
A.B.12米C.D.10米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下图是一座人行天桥的示意图,天桥的高CB为10米,坡面CA的坡角为30°.为了方便行人推车过桥,市政部门决定降低坡度,使新坡面CD的坡角为18°,若新桥脚前需留4米的人行道,问离原坡脚15米的花坛是否需要拆除?请说明理由.
(参考数据:sinl8°≈0.3090,cosl8°≈0.9511,tanl8°≈0.3249,1.414,≈1.732)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦,则tan∠OBE=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中∠C=90°,AB=5,BC=4,则tanA=_________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于锐角,若cot=,则cot45°=          

查看答案和解析>>

同步练习册答案