精英家教网 > 初中数学 > 题目详情
如图,已知PA、PB切⊙O于点A、B,OP交AB于C,则图中能用字母表示的直角共有( )个.

A.3
B.4
C.5
D.6
【答案】分析:根据切线性质OA⊥PA,OB⊥PB;根据切线长定理结合等腰三角形性质有OP⊥AB.
解答:解:根据切线性质有∠OAP,∠OBP是直角;
根据切线长定理,PA=PB,∠APO=∠BPO.
∴OP⊥AB,∠ACO,∠BCO,∠ACP,∠BCP都是直角.
共6个.故选D.
点评:此题综合运用了切线的性质定理、切线长定理和等腰三角形的三线合一性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是
8

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知PA、PB切⊙O于点A、B,OP交AB于C,则图中能用字母表示的直角共有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知PA、PB都是⊙O的切线,A、B为切点,且∠APB=60°.若点C是⊙O异于A、B的任意一点,则∠ACB=(  )
A、60°B、120°C、60°或120°D、不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•锦州二模)如图,已知PA、PB是⊙O的两条切线,A、B是切点,连接OP.
(1)求证:PA=PB;
(2)若⊙O的半径为2,PA=2
3
,求阴影部分面积.

查看答案和解析>>

同步练习册答案