【题目】先化简再求值[(2x﹣y)2+(2x+y)(2x﹣y)+8xy]÷2x,其中x=﹣3,y=2。
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系中,A,B两点在x轴上,线段OA,OB的长分别为方程x2-8x+12=0的两个根(OB>OA),点C是y轴上一点,其坐标为(0,-3).
(1)求A,B两点的坐标;
(2)求经过A,B,C三点的抛物线的关系式;
(3)D是点C关于该抛物线对称轴的对称点,E是该抛物线的顶点,M,N分别是y轴、x轴上的两个动点.
①当△CEM是等腰三角形时,请直接写出此时点M的坐标;
②以D、E、M、N位顶点的四边形的周长是否有最小值?若有,请求出最小值,并直接写出此时点M,N的坐标;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用配方法解下列方程,配方正确的是( )
A. 2y2﹣4y﹣4=0可化为(y﹣1)2=4 B. x2﹣2x﹣9=0可化为(x﹣1)2=8
C. x2+8x﹣9=0可化为(x+4)2=16 D. x2﹣4x=0可化为(x﹣2)2=4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为5cm,直线1上有一点P,OP=5cm,则直线1与⊙O的位置关系为( )
A. 相交 B. 相离 C. 相切 D. 相交或相切
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,点D、E在边AC上,AD=4cm,点E是CD的中点,以DE为边的矩形DEFG的顶点G在边AB上,动点P从点A出发,以1cm/s的速度沿AC向点C运动,过点P作PQ∥AB交BC于点Q,设点P的运动时间为t(s),矩形DEFG与△PCQ重叠部分图形的面积为s(cm2).
(1)在点P的运动过程中,当线段PQ与矩形DEFG的边DG有交点,令交点为H,用含t的代数式表示线段DH的长.
(2)求s与t的函数关系式.
(3)点P出发的同时,动点M从点D出发,以acm/s的速度沿D-G-F-E-F运动,点N是线段PQ中点,在点P的运动过程中,若点M、N能够重合在矩形DEFG的边上,求动点M的速度a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com