试题分析:(1)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;
(2)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.
试题解析:(1)如图①,连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OA=OC,
∴∠BAC=∠OCA,
∴∠BAC=∠DAC=30°;
(2)如图②,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠BAF=90°﹣∠B,
∴∠AEF=∠ADE+∠DAE=90°+18°=108°,
在⊙O中,四边形ABFE是圆的内接四边形,
∴∠AEF+∠B=180°,
∴∠B=180°﹣108°=72°,
∴∠BAF=90°﹣∠B=90°﹣72°=18°.
考点: 1.切线的性质;2.圆周角定理;3.直线与圆的位置关系.