分析 (1)连接OD,由AC是⊙O的直径,得到CD⊥AB,根据等腰三角形的性质得到AD=BD,根据切线的性质即可得到结论;
(2)根据等腰三角形的性质得到∠A=∠B,解直角三角形得到AC=10,于是得到结论.
解答 解:(1)连接OD,
∵AC是⊙O的直径,
∴CD⊥AB,
∵AC=BC,
∴AD=BD,
∵AO=CO,
∴OD∥BC,
∵DE是⊙O的切线,
∴OD⊥DE,
∴DE⊥BC;
(2)∵AC=BC,
∴∠A=∠B,
∵cosB=$\frac{3}{5}$,
∴cosA=$\frac{3}{5}$,
∵⊙O的半径为5,
∴AC=10,
∴AD=6,
∴AB=2AD=12.
点评 此题考查了切线的性质,等腰三角形的判定与性质,圆周角定理,熟练掌握性质及定理是解本题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1.5 | B. | 2 | C. | $\frac{{\sqrt{3}}}{2}$+$\frac{3}{4}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com