精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.

(1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2 , 求S1﹣S2的最大值.

【答案】
(1)

解:由题意可得 ,解得

∴抛物线解析式为y=﹣ x2+ x+2;


(2)

解:当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,

∵A、B关于对称轴对称,C、D关于对称轴对称,

∴四边形ABDC为等腰梯形,

∴∠CAO=∠DBA,即点D满足条件,

∴D(3,2);

当点D在x轴下方时,

∵∠DBA=∠CAO,

∴BD∥AC,

∵C(0,2),

∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,

∴直线AC解析式为y=2x+2,

∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,

∴直线BD解析式为y=2x﹣8,

联立直线BD和抛物线解析式可得 ,解得

∴D(﹣5,﹣18);

综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);


(3)

解:过点P作PH∥y轴交直线BC于点H,如图2,

设P(t,﹣ t2+ t+2),

由B、C两点的坐标可求得直线BC的解析式为y=﹣ x+2,

∴H(t,﹣ t+2),

∴PH=yP﹣yH=﹣ t2+ t+2﹣(﹣ t+2)=﹣ t2+2t,

设直线AP的解析式为y=px+q,

,解得

∴直线AP的解析式为y=(﹣ t+2)(x+1),令x=0可得y=2﹣ t,

∴F(0,2﹣ t),

∴CF=2﹣(2﹣ t)= t,

联立直线AP和直线BC解析式可得 ,解得x= ,即E点的横坐标为

∴S1= PH(xB﹣xE)= (﹣ t2+2t)(5﹣ ),S2=

∴S1﹣S2= (﹣ t2+2t)(5﹣ )﹣ =﹣ t2+5t=﹣ (t﹣ 2+

∴当t= 时,有S1﹣S2有最大值,最大值为


【解析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.
(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;
(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;
(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y的图象经过点(﹣32).

1)求它的解析式;

2)在直角坐标中画出该反比例函数的图象;

3)若﹣3x<﹣2,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+ x+2与x轴交于点A,B,与y轴交于点C.

(1)试求A,B,C的坐标;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.
①求点D的坐标;
②判断四边形ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点BC重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,BPO=45°,试判断此车是否超过了每小时80千米的限制速度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法:
①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时;④乙车共行驶3 小时,其中正确的个数为( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中ABCD分别代表色素含量为0.05%以下、0.05%0.1%0.1%0.15%0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:

1)本次调查一共抽查了多少袋方便面?

2)将图1中色素含量为B的部分补充完整;

3)图2中的色素含量为D的方便面所占的百分比是多少?

4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?

查看答案和解析>>

同步练习册答案