精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=kx+b(k≠0)的图象过点P(﹣ ,0),且与反比例函数y= (m≠0)的图象相交于点A(﹣2,1)和点B.
(1)求一次函数和反比例函数的解析式;
(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?

【答案】
(1)解:一次函数y=kx+b(k≠0)的图象过点P(﹣ ,0)和A(﹣2,1),

,解得

∴一次函数的解析式为y=﹣2x﹣3,

反比例函数y= (m≠0)的图象过点A(﹣2,1),

,解得m=﹣2,

∴反比例函数的解析式为y=﹣


(2)解:

解得 ,或

∴B( ,﹣4)

由图象可知,当﹣2<x<0或x> 时,一次函数的函数值小于反比例函数的函数值.


【解析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点C是以AB为直径的⊙O上的一点,BD与过点C的切线互相垂直,垂足为点D.
(1)求证:BC平分∠DBA;
(2)若CD=6,BC=10,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1和∠2互补,∠C=EDF.

(1)判断DFEC的关系为   

(2)试判断DEBC的关系,并说明理由.

(3)试判断∠DEC与∠DFC的关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.

(1)直线CD的函数表达式为   ;(直接写出结果)

(2)点Q为线段DE上的一个动点,连接BQ.

若直线BQ将BDE的面积分为1:2两部分,试求点Q的坐标;

BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上,请直接写出点Q的坐标: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的 ,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算的结果中,是正数的是(
A.(﹣2014)1
B.﹣(2014)1
C.(﹣1)×(﹣2014)
D.(﹣2014)÷2014

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰 RtABC 中,AC=BC=2,点 D BC 的中点,P 是射线 AD 上的一个动点,则当△BPC 为直角三角形时,AP 的长为____________

查看答案和解析>>

同步练习册答案