精英家教网 > 初中数学 > 题目详情

关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2

(1)求m的取值范围;

(2)若2(x1+x2)+x1x2+10=0,求m的值.

 

【答案】

(1)m≤;(2)-3.

【解析】

试题分析:(1)因为方程有两个实数根,所以根的判别式要大于等于0,即△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=-3,x1x2=m-1代入2(x1+x2)+x1x2+10=0,解关于m的方程即可.

试题解析:(1)∵方程有两个实数根,

∴△≥0,

∴9-4×1×(m-1)≥0,

解得m≤

(2)∵x1+x2=-3,x1x2=m-1,

又∵2(x1+x2)+x1x2+10=0,

∴2×(-3)+m-1+10=0,

∴m=-3.

考点:1.一元二次方程根与系数关系;2. 一元二次方程 根的判别式.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•北仑区二模)若关于x的一元二次方程a(x+m)2=3两个实根为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点橫坐标分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是关于x的一元二次方程,则m=
65
2
65
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是
a<4
a<4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州一模)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:
已知x1,x2是一员二次方程(m-3)x2+2mx+m=0的两个实数根.
(1)是否存在实数m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,请你说明理由;
(2)若|x1-x2|=
3
,求m的值和此时方程的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案