精英家教网 > 初中数学 > 题目详情
4、如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)
分析:本题可将已知的条件构建到直角三角形中进行计算,过点C作CE∥AD,交AB于E,那么∠CEF=∠DAB=30°且AE=CD=50,根据观察发现,∠CBF=∠CEB+∠ECB=60°,而∠CEB=30°,那么∠ECB=∠CEB,那么CB=BE,直角三角形CBF中,有了CB的长,有锐角的度数,CF的值便可求出来了.
解答:解:过点C作CE∥AD,交AB于E
∵CD∥AE,CE∥AD
∴四边形AECD是平行四边形
∴AE=CD=50m,EB=AB-AE=50m,∠CEB=∠DAB=30°
又∠CBF=60°,故∠ECB=30°
∴CB=EB=50m
∴在Rt△CFB中,CF=CB•sin∠CBF=50•sin60°≈43m
答:河流的宽度CF的值为43m.
点评:本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=32°,然后沿河岸走了100m到达B处,测得∠CBF=64°,求河流的宽度CF的值?(结果精确到0.1m).参考数据:
角度α sinα cosα tanα
32° 0.53 0.85 0.62
64° 0.9 0.44 2.05

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.小明在河岸b上的A处测得∠DAB=30°,塑料瓶正好在AD上的P处,然后沿河岸用了20秒走了100m到达B处,测得∠CBE=60°,塑料瓶也漂流到了BC上的Q处.
(1)求河流的宽度(结果保留精确值);
(2)若塑料瓶在漂流过程中始终与河岸b距离5
3
m,求水流速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•贵阳模拟)如图,河流两岸a、b互相平行,C,D是河岸a上间隔50m的两个电线杆,某人在河岸b上的A处测得∠DAB=35°,然后沿河岸走了100m到达B处,测得∠CBE=62°,作CE⊥b于点E,求河流的宽度CE(结果精确到个位).

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广东省佛山市禅城区中考科研测试数学卷(解析版) 题型:解答题

如图,河流两岸互相平行,C,D是河岸上间隔50m的两个电线杆,某人在河岸上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值(结果精确到个位).

 

查看答案和解析>>

同步练习册答案