精英家教网 > 初中数学 > 题目详情

【题目】已知⊙O1和⊙O2的半径分别为m、n,且m、n满足 +(n﹣2)2=0,圆心距O1O2= ,则两圆的位置关系为

【答案】相交
【解析】解:∵⊙O1和⊙O2的半径分别为m、n,且m、n满足 +(n﹣2)2=0,
∴m﹣1=0,n﹣2=0,
解得:m=1,n=2,
∴m+n=3,
∵圆心距O1O2=
∴两圆的位置关系为:相交.
所以答案是:相交.
【考点精析】认真审题,首先需要了解圆与圆的位置关系(两圆之间有五种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.两圆圆心之间的距离叫做圆心距.两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C、B之间选择一点D(C、D、B三点共线),测得旗杆顶部A的仰角为75°,且CD=8m

(1)求点D到CA的距离;
(2)求旗杆AB的高.
(注:结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.

(1)求证:CP=AQ;
(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,DE是过点A的直线,于点D于点E

BCDE的同侧如图求证:

BCDE的两侧如图,其他条件不变,中的结论还成立吗?不需证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+2,善于思考的小明进行了以下探索:
设a+b=(m+n2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,这样小明就找到了一种把部分a+b的式子化为平方式的方法。
请我仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n2,用含m、n的式子分别表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均为正整数,求a的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%
(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?
(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?
(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:|﹣ |﹣2cos45°﹣( 1+(tan80°﹣ 0+
(2)化简:( ﹣2)÷ ﹣2x,再代入一个合适的x求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点OEF∥ABBCF,交ACE,过点OOD⊥BCD,下列四个结论:

①∠AOB=90°+CAE+BF=EF③当∠C=90°时,EF分别是ACBC的中点;④若OD=aCE+CF=2b,则SCEF=ab其中正确的是(  )

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: +|1﹣ |﹣2sin60°+(π﹣2016)0

查看答案和解析>>

同步练习册答案