分析 (1)根据SAS证明△ADC≌△A′DC即可;
(2)根据△ADC≌△A′DC,得出DA′=DA,∠CA′D=∠A=60°,得∠CDA′=∠CDA=75°,得∠BDA′=30°=∠B,则DA′=BA′,BA′=AD,从而得出BC=AC+AD.
解答 解:(1)证明:∵CD平分∠ACB,
∴∠ACD=∠A′CD,
在△ADC和△A′DC中,
$\left\{\begin{array}{l}{CA′=CA}\\{∠ACD=∠A′CD}\\{CD=CD}\end{array}\right.$,
∴△ADC≌△A′DC(SAS);
(2)BC=AC+AD;
理由如下:
由(1)得:△ADC≌△A′DC,
∴DA′=DA,∠CA′D=∠A=60°,CA′=CA,
∵∠ACB=90°,
∴∠B=90°-∠A=30°,
∵∠CA′D=∠B+∠BDA′,
∴∠BDA′=30°=∠B,
∴DA′=BA′,
∴BA′=AD,
∴BC=CA′+BA′=AC+AD.
点评 本题考查了几何图形变换的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com