解:①∵∠BAC=∠EAF,
∴∠FAC=∠EAB,
∵AB=AC,AF=AE,
∴△AFC≌△AEB,
∵∠ACF=∠ABE,
∴点A、B、C、M共圆,
∴∠AMB=∠ACB,而∠BAC=90°,
∴∠ACB=45°,
∴∠AME=180°-45°=135°,
故答案为135°;
②与①证明方法一样得到∠AMB=∠ACB,而∠BAC=60°,
∵∠ACB=60°,
∴∠AME=180°-60°=120°,
故答案为120°;
③∠AME=90°+α,
理由如下:∵∠BAC=∠EAF=α,
∴∠FAC=∠EAB,
又∵AB=AC,AF=AE,
∴△AFC≌△AEB,
∵∠ACF=∠ABE,
∴点A、B、C、M共圆,
∴∠AMB=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=(180°-α?)=90°-α,
∴∠AMB=90°-α,
∴∠AME=180°-(90°-α)=90°+α。
科目:初中数学 来源: 题型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com