精英家教网 > 初中数学 > 题目详情
12.如图甲,将一副三角板的两个直角顶点重合在一起放置.
(1)当∠BOC=60°时,∠AOD=120°.
         当∠BOC=70°时,∠AOD=110°.
(2)如图乙,∠AOC与∠BOD的大小关系如何?请说明理由.
(3)若把三角板COD绕点O顺时针旋转到如图②的位置时,(2)中的结论还成立吗?为什么?

分析 (1)∠AOC+∠BOC=90°,∠COD=90°,于是∠AOD+∠BOC=∠AOC+∠COD+∠BOC=∠AOC+∠BOC+∠COD,然后把∠AOC+∠BOC=90°,∠COD=90°代入计算即可.
(2)由互余两角的关系即可得出结论;
(3)由角的关系即可得出结论.

解答 解:(1)根据题意得∠AOC+∠BOC=90°,∠COD=90°,
∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=∠AOC+∠BOC+∠COD=90°+90°=180°.
当∠BOC=60°时,∠AOD=120°;
当∠BOC=70°时,∠AOD=110°;
故答案为120°,110°;
(2)∠AOC=∠BOD,理由如下:
∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,
∴∠AOC=∠BOD;
(3)成立,∠AOC=∠BOD;理由如下:
∵∠AOC=∠AOB+∠BOC=90°+∠BOC,
∠BOD=∠COD+∠BOC=90°+∠BOC,
∴∠AOC=∠BOD.

点评 本题考查了余角和补角、角的计算;熟练掌握角之间的关系是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.一个平行四边形的周长为24cm,两邻边之比为2:1,则它的两条邻边分别为8cm,4cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,一次函数y=kx+b与反比例函数y=$\frac{m}{x}$的图象相交于A、B两点,过点B作BC⊥x轴,垂足为C,已知A点的坐标是(2,3),BC=2.
(1)求反比例函数与一次函数的关系式;
(2)根据所给条件,请直接写出不等式kx+b-$\frac{m}{x}$>0的解集;
(3)求S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知在一个十二边形中,其中十一个内角和是1680°,求这个十二边形另一个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:$\root{3}{8}$+|$\sqrt{3}$-2|-2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图是一个汉字“互”字,其中,AB∥CD,∠1=∠2,∠MGH=∠MEF.求证:∠MEF=∠GHN.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图1,AB=2,P是线段AB上一点,分别以AP、BP为边作正方形,设AP=x,这两个正方形的面积之和为S,且S与x之间的关系如图2所示,则下列说法中正确的是(  )
A.在点P由点A向点B运动过程中,S有最小值为2
B.在点P由点A向点B运动过程中,S的值不变
C.S与x之间的关系式为S=2x2-4
D.当0<x<1时,S的值越来越大

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)分解因式:3x3-12x2y+12xy2
(2)计算:($\sqrt{6}$-$\sqrt{60}$)×$\sqrt{3}$-$\sqrt{\frac{1}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.问题提出
(1)如图①,已知△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA′B′,连接BB′.则BB′=3$\sqrt{2}$;
问题探究
(2)如图②,已知△ABC是边长为4$\sqrt{3}$的等边三角形,以BC为边向外作等边△BCD,P为△ABC内一点,将线段CP绕点C逆时针旋转60°,点P的对应点为点Q.
①求证:△DCQ≌△BCP;
②求PA+PB+PC的最小值;
问题解决
(3)如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A,D为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含B,C两点)开一个货物入口M,并修建三条专用车道PA,PD,PM.若修建每米专用车道的费用为10000元,当M,P建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留整数)

查看答案和解析>>

同步练习册答案