已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.
(1)求抛物线的解析式;
(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;
(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当S△PAB≤6时,求点P的横坐标x的取值范围.
解:(1)∵抛物线与直线y2=x+1的一个交点的横坐标为2,
∴交点的纵坐标为2+1=3,即交点坐标为(2,3)。
设抛物线的解析式为y1=a(x﹣1)2+4,把交点坐标(2,3)代入得:
3=a(2﹣1)2+4,解得a=﹣1。
∴抛物线解析式为:y1=﹣(x﹣1)2+4=﹣x2+2x+3。.
(2)令y1=0,即﹣x2+2x+3=0,解得x1=3,x2=﹣1,
∴抛物线与x轴交点坐标为(3,0)和(﹣1,0)。
在坐标系中画出抛物线与直线的图形,如图:
根据图象,可知使得y1≥y2的x的取值范围为﹣1≤x≤2。
(3)由(2)可知,点A坐标为(3,0)。
令x=3,则y2=x+1=3+1=4,
∴B(3,4),即AB=4。
设△PAB中,AB边上的高为h,
则h=|xP﹣xA|=|xP﹣3|。
∴S△PAB=AB•h=×4×|xP﹣3|=2|xP﹣3|.
∵S△PAB≤6,∴2|xP﹣3|≤6,化简得:|xP﹣3|≤3。
去掉绝对值符号,将不等式化为不等式组:
﹣3≤xP﹣3≤3,解此不等式组,得:0≤xP≤6。
∴当S△PAB≤6时,点P的横坐标x的取值范围为0≤xP≤6。
解析试题分析:(1)首先求出抛物线与直线的交点坐标,然后利用待定系数法求出抛物线的解析式。
(2)确定出抛物线与x轴的两个交点坐标,依题意画出函数的图象.由图象可以直观地看出使得y1≥y2的x的取值范围。
(3)首先求出点B的坐标及线段AB的长度;设△PAB中,AB边上的高为h,则由S△PAB≤6可以求出h的范围,这是一个不等式,解不等式求出xP的取值范围。
科目:初中数学 来源: 题型:解答题
在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,顶点为(3,4)的抛物线交 y轴与A点,交x轴与B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.
(1)求点A、B、C、D的坐标;
(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;
(3)取点E(,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中点.
①点G是否在直线l上,请说明理由;
②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知函数(是常数)
(1)若该函数的图像与轴只有一个交点,求的值;
(2)若点在某反比例函数的图像上,要使该反比例函数和二次函数都是随的增大而增大,求应满足的条件以及的取值范围;
(3)设抛物线与轴交于两点,且,,在轴上,是否存在点P,使△ABP是直角三角形?若存在,求出点P及△ABP的面积;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知:如图①,直线与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.
(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年四川南充8分)如图,二次函数y=x2+bx-3b+3的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).
(1)求这条抛物线的解析式;
(2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年四川泸州12分)如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).
(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某公司营销A,B两种产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系。
当x=1时,y=1.4;当x=3时,y=3.6。
信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系。
根据以上信息,解答下列问题:
(1)求二次函数解析式;
(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com