精英家教网 > 初中数学 > 题目详情
16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).
(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.

分析 (1)根据网格特点,找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为$\sqrt{{4}^{2}+{2}^{2}}$,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.

解答 解:(1)如图,△A1B1C1即为所求.
(2)如图,△A2B2C2即为所求.
点B旋转到点B2所经过的路径长为:$\frac{90π\sqrt{{4}^{2}+{2}^{2}}}{180}$=$\sqrt{5}$π.
故点B旋转到点B2所经过的路径长是$\sqrt{5}$π.

点评 本题综合考查了利用对称变换作图,利用旋转变化作图,熟知网格结构特点找出变换后的对应点的位置是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.化简:$\frac{{a}^{2}+2a}{a-1}$÷(a+$\frac{a}{a-1}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系,点P(3n+2,4-2n)在第四象限,求实数n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).
(1)求线段CD的长;
(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?
(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.
①t为何值时,l经过点C?
②求当l经过点D时t的值,并求出此时刻线段PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示;△ABC是等腰三角形,∠ABC=90°.
(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法)
(2)垂直平分线l交AC于点D,求证:AB=2DH.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为(  )
A.60°B.70°C.80°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人数.
(1)请你求出图中的x值;
(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.
(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是4$\sqrt{10}$,tanα=$\frac{1}{2}$,求四边形OBEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.
(1)若点M(2,a)是反比例函数y=$\frac{k}{x}$(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;
(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案