精英家教网 > 初中数学 > 题目详情

阅读理解

如图,在中,AD平分,求证:.

小明在证明此题时,想通过证明三角形相似来解决,但发现图中无相似三角形,于是过点B作BE//AC交AD的延长线于点E,构造,则.

于是小明得出结论:在中,AD平分,则.

(1)请完成小明的证明过程。

 应用结论

(2)如图,在中,AD平分

线段BD的长度为:                

‚求线段CD的长度和的值

解答:解:过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,

∴△BDE∽△CDA,∴,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理解:
(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转
n
360
周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转
 
周;若AB=l,则⊙O自转
 
周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转
 
周;若∠ABC=60°,则⊙O在点B处自转
 
周;
(2)如图3,∠ABC=90°,AB=BC=
1
2
c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转
 
周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

25、阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ABC中,已知∠ABC和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

27、阅读理解:
某校二(1)班学生到野外活动,为测量一池塘两端A,B的距离,设计出如下几种方案:
(Ⅰ)如图先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB之长.
(Ⅱ)如图(2),先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出了DE的长即为A,B的距离.
阅读后回答下列问题:
(1)方案(Ⅰ)是否可行,理由是
利用“边角边”判断两个三角形全等,对应边就相等.

(2)方案(Ⅱ)是否可行,理由是
利用“角边角”判断两个三角形全等,对应边就相等.

(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
对应角∠ABD=∠BDE=90°
,若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

【阅读理解】:若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.如图①,直线l经过三角形ABC的顶点A和边BC的中点N,易知直线l将△ABC分成两个面积相等的图形,则称直线l为△ABC的等积直线.

根据上述内容解决以下问题:
(1)如图②,在矩形ABCD中,直线l经过AD、BC边的中点M、N,请你判断直线l是否为该矩形的等积直线.
 (填“是”或“否”)并在图②中再画出一条该矩形的等积直线;(不必写作法,保留作图痕迹)
(2)如图③,在梯形ABCD中,直线l经过AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线.
;(填“是”或“否”)
(3)在图③中,过MN的中点O任做一条直线PQ分别交AD,BC于点P,Q(如图④),猜想PQ是否为该梯形的等积直线,若“是”请证明,若“不是”请说明理由;
【探索应用】:
李大爷家有一块五边形的土地如图⑤,已知∠A、∠B、∠C都是直角,AB∥CD,BC∥AE,现决定画一条线把五边形土地分为两
块,其中一块地用来改种核桃树,要求两块地面积相同,请你帮李大爷画出这条线,并判断这样的直线有多少条(保留作图痕迹,不必说明理由).

查看答案和解析>>

同步练习册答案