精英家教网 > 初中数学 > 题目详情
9.课间,小明拿着老师的等腰直角三角板的三角板玩,不小心掉到两墙之间,如图所示.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知DE=42cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等)

分析 (1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.
(2)利用(1)中全等三角形的性质进行解答.

解答 (1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,$\left\{\begin{array}{l}{∠ADC=∠CEB}\\{∠DAC=∠BCE}\\{AC=BC}\end{array}\right.$,
∴△ADC≌△CEB(AAS);

(2)解:由题意得:∵一块墙砖的厚度为a,
∴AD=4a,BE=3a,
由(1)得:△ADC≌△CEB,
∴DC=BE=3a,AD=CE=4a,
∴DC+CE=BE+AD=7a=42,
∴a=6,
答:砌墙砖块的厚度a为6cm.

点评 此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.一元二次方程x2-9=0的根是(  )
A.x=3B.x=-3C.x1=3,x2=-3D.x1=9,x2=-9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的是(  )
①abc>0;   ②3a+b>0;   ③-1<k<0;  ④4a+2b+c<0;  ⑤a+b<k.
A.①②③B.②③⑤C.②④⑤D.②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知抛物线y=x2+bx+2的对称轴为直线x=1,则b的值是-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,则在数轴上A、B两点之间的距离AB=|a-b|.
所以式子|x-2|的几何意义是数轴上表示x的点与表示2的点之间的距离.借助于数轴回答下列问题:
①数轴上表示2和5两点之间的距离是3,数轴上表示1和-3的两点之间的距离是4.
②数轴上表示x和-2的两点之间的距离表示为|x+2|.
③数轴上表示x的点到表示1的点的距离与它到表示-3的点的距离之和可表示为:|x-1|+|x+3|.则|x-1|+|x+3|的最小值是4.
④若|x-3|+|x+1|=8,则x=-3或5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下列算式:
①1×3-22=3-4=-1;
②2×4-32=8-9=-1;
③3×5-42=15-16=-1;
④4×6-52=24-25=-1;

(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母n的式子表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.抛物线y=-x2+2(m-1)x-2n的顶点为A(1,3),求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.若$\sqrt{x-2}$+$\sqrt{2-x}$+y2+4y=-2x,求2x-y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:
x-10234
y522510
(1)根据上表填空:
①这个抛物线的对称轴是x=1,抛物线一定会经过点(-2,10  );
②抛物线在对称轴右侧部分是上升(填“上升”或“下降”);
(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.

查看答案和解析>>

同步练习册答案