已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.
(1)如图1,当点P与点G分别在线段BC与线段AD上时.
①求证:DG=2PC;
②求证:四边形PEFD是菱形;
(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.
(1)
①证明:如图1
作PM⊥AD于点M
∵PD=PG,
∴MG=MD,
又∵MD=PC
∴DG=2PC
②证明:∵PG⊥FD于H
∴∠DGH+∠ADF= 90° 第25题 图1
又∵∠ADF+∠AFD= 90°
∴∠DGP=∠AFD
∵四边形ABCD是正方形,PM⊥AD于点M,
∴∠A=∠PMD= 90°,PM=AD,
∴△PMG≌△DAF
∴DF=PG
∵PG=PE
∴FD=PE,
∵DF⊥PG,PE⊥PG
∴DF∥PE
∴四边形PEFD是平行四边形.
又∵PE=PD
∴□PEFD是菱形
(2)四边形PEFD是菱形
证明:如图②
∵四边形ABCD是正方形,DH⊥PG于H
∴∠ADC=∠DHG=90°
∴∠CDG=∠DHG=90°
∴∠CDP+∠PDG=90°,∠GDH+∠G=90°
∵PD=PG
∴∠PDG=∠G
∴∠CDP=∠GDH
∴∠CDP=∠ADF
又∵AD=DC,∠FAD=∠PCD=90°
∴△PCD≌△FAD
∴FD=PD
∵ PD=PG=PE
∴FD=PE
又∵FD⊥PG,PE⊥PG
∴FD∥PE
∴四边形PEFD是平行四边形.
又∵FD=PD
∴□PEFD是菱形
科目:初中数学 来源: 题型:
四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是( )
| A. | OA=OC,OB=OD | B. | AD∥BC,AB∥DC | C. | AB=DC,AD=BC | D. | AB∥DC,AD=BC |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是________分.
查看答案和解析>>
科目:初中数学 来源: 题型:
某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5 :4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A商场和B商场的单价.
查看答案和解析>>
科目:初中数学 来源: 题型:
在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为( )
A. 18 B. 20 C. 24 D. 28
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com