【题目】如图,AB是⊙O的直径,且AB=2cm,点P为弧AB上一动点(不与A,B重合), = ,过点D作⊙O的切线交PB的延长线于点C.
(1)试证明AB∥CD;
(2)填空: ①当BP=1cm时,PD=cm;
②当BP=cm时,四边形ABCD是平行四边形.
【答案】
(1)证明:连接OD.
∵CD是⊙O的切线,
∴OD⊥CD,
∵ = ,
∴∠AOD=∠BOD=90°,
∴OD⊥AB,
∴AB∥CD.
(2) + ;
【解析】(2)解:①作DE⊥AP于E,DF⊥PC于F.
∵ = ,
∴∠APD=∠DPB,
∴DE=DF,
∵AB是直径,
∴∠APB=90°,
∴∠EPD=∠FPD=45°,易知四边形PEDF是正方形,
∵AD=BD,DE=DF,
∴Rt△DEA≌Rt△DFB,
∴AE=BF,
在Rt△PAB中,∵AB=2cm,PB=1cm,
∴PA= = ,
∴PA+PB=PE+AE+PF﹣BF=2PE=1+ ,
∴PD= PE=( + )cm.
所以答案是 + .②当P是 中点时,DC=2OB=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形.
易知BD= OB= cm,
所以答案是 .
【考点精析】关于本题考查的平行四边形的判定和切线的性质定理,需要了解两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;
(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的。“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数,例如:(a+b)2=a2+2ab+b2展开式中的系数1,2,1恰好对应图中第三行的数字;(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出(a+b)6的展开式:(a+b)6=____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直接写出结果:(1)-1+1=_____;(2)3-7=_____;
(3)4÷=_____;(4)-7×0.5=_____;(5)(-2)3=_____;
(6)(-1)2n=_______(n为正整数);(7)4x=0的解是_____;
(8)x=4 的解是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个三角板(含30°、60°角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且CD=CE,点F在直尺的另一边上,那么∠BAF的大小为°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了鼓励市民节约用水,某市水费实行阶梯式计量水价.每户每月用水量不超过25吨,收
费标准为每吨a元;若每户每月用水量超过25吨时,其中前25吨还是每吨a元,超出的部
分收费标准为每吨b元.下表是小明家一至四月份用水量和缴纳水费情况.根据表格提供的数
据,回答:
月份 | 一 | 二 | 三 | 四 |
用水量(吨) | 16 | 18 | 30 | 35 |
水费(元) | 32 | 36 | 65 | 80 |
(1)a=________;b=________;
(2)若小明家五月份用水32吨,则应缴水费 元;
(3)若小明家六月份应缴水费102.5元,则六月份他们家的用水量是多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com