精英家教网 > 初中数学 > 题目详情
4.如图,A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积为$\frac{2}{3}$π.

分析 连接OB、OC,如图,利用切线的性质得∠ABO=90°,再利用三角函数的定义可求出∠BAO=30°,则∠AOB=60°,接着利用平行线的性质得到∠CBO=∠AOB=60°,利用三角形面积公式可得到S△ABC=S△OCB,然后根据扇形的面积公式,利用图中阴影部分的面积=S扇形BOC进行计算.

解答 解:连接OB、OC,如图,
∵AB切⊙O于点B,
∴OB⊥AB,
∴∠ABO=90°,
在Rt△ABO中,∵sin∠BAO=$\frac{OB}{OA}$=$\frac{2}{4}$=$\frac{1}{2}$,
∴∠BAO=30°,
∴∠AOB=60°,
∵BC∥OA,
∴∠CBO=∠AOB=60°,S△ABC=S△OCB
∴∠BOC=60°,图中阴影部分的面积=S扇形BOC
∴图中阴影部分的面积=$\frac{60•π•{2}^{2}}{360}$=$\frac{2}{3}$π.
故答案为$\frac{2}{3}$π.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了平行线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.若二次函数y=ax2+bx+c(a>0)的图象与x轴的交点分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0),且在x轴下方,对于以下说法:①b2-4ac>0②方程ax2+bx+c=y0的解是x=x0③当x0=$\frac{{x}_{1}+{x}_{2}}{2}$时,y0的值最小④(x0-x1)(x0-x2)<0,其中正确的序号是①③④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.己知:直线y=x+3与x轴、y轴分别交于点A、B,抛物线y=ax2+bx+c(a、b、c均不为0)与x轴交于点C、D两点.
(1)如图,当抛物线经过点B,且抛物线的顶点M为(1,4)时.
①求抛物线相应的函数表达式:
②求点C到直线y=x+3的距离:
(2)无论a为何值.抛物线y=ax2+bx+c的顶点M总在直线y=x+3上,经过点M作x轴的平行线与经过B另一条直线y=$\frac{1}{3}$x+n交于点E,经过点E作x轴的垂线和这条抛物线交于点F,和直线y=x+3交于点G,试探究EF和EG的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.
(1)这50名学生每人一周内的零花钱数额的平均数是12元/人;
(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是36°.
(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.抛物线C1:y1=a1x2+b1x+c1中,函数值y1与自变量x之间的部分对应关系如下表:
x-3-2-1134
y1-4-10-4-16-25
(1)设抛物线C1的顶点为P,则点P的坐标为(-1,0);
(2)现将抛物线C1沿x轴翻折,得到抛物线C2:y2=a2x2+b2x+c2,试求C2的解析式;
(3)现将抛物线C2向下平移,设抛物线在平移过程中,顶点为点D,与x轴的两交点为点A、B.
①在最初的状态下,至少向下平移多少个单位,点A、B之间的距离不小于6个单位?
②在最初的状态下,若向下平移m(m>0)个单位时,对应的线段AB长为n,请直接写出m与n的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,△ABC中,∠ACB=90°,AC=BC,点E,F分别在边BC、AC上运动,且始终保持CE=CF,连接AE、BF,交于点D,过点C作CG⊥AE交AB于G,过点G作GH⊥BF于点M,交BC于H.
(1)如图1,当GH与AE交于点N时,
①若∠EAB=20°,求∠GHB的度数;
②求证:AN=CG+GN;
(2)如图2,连接CD并延长与AB交于点O,连接OM,随着点E的运动,∠OMG的大小是否改变?如果不变,请求出∠OMG的度数;如果要变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先化简,再求值:($\frac{{x}^{2}+4}{x}$-4)÷$\frac{{x}^{2}-4}{{x}^{2}-2x}$-$\frac{x-{x}^{2}}{x-1}$,然后在0,1,2,3中选一个你认为合适的x值,代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.探索发现
(1)数学课上,老师出了一道题:如图1,在Rt△ABC中,∠C=90°,∠A=22.5°,请你你在图1中,构造一个合适的等腰直角三角形,求tan22.5°的值(结果可带根号).
学以致用
(2)如图2,厂房屋顶人字架(AB=BD)的跨度10米(即AD=10米),∠A=22.5°,BC是中柱(C为AD的中点)请运用(1)中的结论求中柱BC的长(结果可带根号).

查看答案和解析>>

同步练习册答案