6£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬A£¨m£¬0£©£¬B£¨m+4£¬0£©£¬¶ÔÓÚÏ߶ÎABºÍxÖáÉÏ·½µÄµãP¸ø³öÈç϶¨Ò壺µ±45¡ã¡Ü¡ÏAPB¡Ü90¡ãʱ£¬³ÆµãPΪÏ߶ÎABµÄ¡°°ëÔµ㡱£®
£¨1£©Èô m=2ʱ£¬
¢ÙÔÚµãC£¨3£¬1 £©£¬D£¨ 5£¬3 £©£¬E£¨ 2£¬4 £©ÖУ¬Ï߶ÎABµÄ¡°°ëÔµ㡱ÓÐD¡¢E£»
¢ÚÔÚÖ±Ïßy=x+bÉÏ´æÔÚÏ߶ÎABµÄ¡°°ëÔµ㡱£¬ÇóbµÄÈ¡Öµ·¶Î§£®
£¨2£©Çë´ÓÏÂÃæÁ½¸öÎÊÌâÖÐÈÎÑ¡Ò»¸ö×÷´ð£®
ÎÂÜ°Ìáʾ£ºÁ½Ìâ¾ù´ð²»Öظ´¼Æ·Ö£®
ÎÊÌâÒ»£ºÖ±Ïßy=-x+14ÓëxÖá½»ÓÚµãM£¬ÓëyÖá½»ÓÚµãN£¬ÈôÏ߶ÎABµÄËùÓС°°ëÔµ㡱¶¼ÔÚ¡÷MONÄÚ²¿£¬Ö±½Óд³ömµÄÈ¡Öµ·¶Î§£®
ÎÊÌâ¶þ£ºµãG£¨3£¬-1£©£¬µãPΪÏ߶ÎABµÄ¡°°ëÔµ㡱£¬Ö±ÏßGP°ÑÏ߶ÎAB·Ö³É1£º3Á½²¿·Ö£¬µ±m=1ʱ£¬Ö±½Óд³öµãPµÄºá×ø±êµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¢ÙÈçͼ»­³ö¡°°ëÔÂÐÍ¡±µÄͼÐμ´¿ÉÅжϣ»¢Úµ±Ö±Ïßy=x+b¾­¹ýµãB£¨6£¬0£©Ê±£¬b=-6£¬µ±Ö±ÏßÓë$\widehat{AEB}$ÏàÇÐʱ£¬ÓÉ$\left\{\begin{array}{l}{y=x+b}\\{£¨x-4£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃµ½2x2+£¨2b-12£©x+b2-4b+12=0£¬ÓÉÌâÒâ¡÷=0£¬¿ÉµÃb2+4b-12=0£¬½âµÃb=2»ò-6£¬Óɴ˼´¿ÉÅжϣ»
£¨2£©ÎÊÌâÒ»£ºÒ×Öª¡°°ëÔÂÐÍ¡±µÄ´óÔ²°ë¾¶Îª2$\sqrt{2}$£¬Ð¡Ô²°ë¾¶Îª2£¬µ±¡°°ëÔÂÐÍ¡±ÓëyÖáÏàÇÐʱ£¬m=2$\sqrt{2}$-2£¬µ±¡°°ëÔÂÐÍ¡±ÓëÖ±Ïßy=-x+14ÏàÇÐʱ£¬Ò×ÖªÇеãΪ£¨10£¬4£©£¬´ËʱB£¨10£¬0£©£¬m=6£¬¼´¿ÉÍƳöµ±$2\sqrt{2}-2$£¼m£¼6ʱ£¬Ï߶ÎABµÄËùÓС°°ëÔµ㡱¶¼ÔÚ¡÷MONÄÚ²¿£®
ÎÊÌâ¶þ£ºÈçͼ3ÖУ¬Ö±ÏßPG·ÖÏ߶ÎABÈýµÈ·Ö£¬¢Ùµ±Ö±ÏßPG¾­¹ýQ£¨2£¬0£©Ê±£¬Ö±ÏßPGµÄ½âÎöʽΪy=-x+2£¬ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}{+y}^{2}=4}\end{array}\right.$½âµÃM£¨$\frac{5-\sqrt{7}}{2}$£¬$\frac{-1+\sqrt{7}}{2}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬½âµÃH£¨$\frac{3-\sqrt{7}}{2}$£¬$\frac{\sqrt{7}+1}{2}$£©£¬¿ÉµÃµãPµÄºá×ø±êµÄ·¶Î§Îª$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®
¢Úµ±Ö±ÏßPG¾­¹ýF£¨4£¬0£©Ê±£¬Í¬·¨¿ÉÇó£»

½â´ð ½â£º£¨1£©¢ÙÈçͼ1ÖУ¬¹Û²ìͼÏó¿ÉÖª£¬Ï߶ÎABµÄ¡°°ëÔµ㡱ÓÐD£¬E£®
¹Ê´ð°¸ÎªD¡¢E£®

¢ÚÈçͼ2ÖУ¬

¢Ùµ±Ö±Ïßy=x+b¾­¹ýµãB£¨6£¬0£©Ê±£¬b=-6£¬
¢Úµ±Ö±ÏßÓë$\widehat{AEB}$ÏàÇÐʱ£¬ÓÉ$\left\{\begin{array}{l}{y=x+b}\\{£¨x-4£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃµ½2x2+£¨2b-12£©x+b2-4b+12=0£¬
ÓÉÌâÒâ¡÷=0£¬¿ÉµÃb2+4b-12=0£¬½âµÃb=2»ò-6£¬
×ÛÉÏËùÊö£¬ÔÚÖ±Ïßy=x+bÉÏ´æÔÚÏ߶ÎABµÄ¡°°ëÔµ㡱£¬bµÄÈ¡Öµ·¶Î§Îª-6¡Üb¡Ü2£®
-6£¼b¡Ü2£®

£¨3£©ÎÊÌâ1£ºÒ×Öª¡°°ëÔÂÐÍ¡±µÄ´óÔ²°ë¾¶Îª2$\sqrt{2}$£¬Ð¡Ô²°ë¾¶Îª2£¬
µ±¡°°ëÔÂÐÍ¡±ÓëyÖáÏàÇÐʱ£¬m=2$\sqrt{2}$-2£¬
µ±¡°°ëÔÂÐÍ¡±ÓëÖ±Ïßy=-x+14ÏàÇÐʱ£¬Ò×ÖªÇеãΪ£¨10£¬4£©£¬´ËʱB£¨10£¬0£©£¬m=6£¬
¡àµ±$2\sqrt{2}-2$£¼m£¼6ʱ£¬Ï߶ÎABµÄËùÓС°°ëÔµ㡱¶¼ÔÚ¡÷MONÄÚ²¿£®

ÎÊÌâ2£ºÈçͼ3ÖУ¬

¡ßÖ±ÏßPG·ÖÏ߶ÎABÈýµÈ·Ö£¬
¢Ùµ±Ö±ÏßPG¾­¹ýQ£¨2£¬0£©Ê±£¬
Ö±ÏßPGµÄ½âÎöʽΪy=-x+2£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}{+y}^{2}=4}\end{array}\right.$½âµÃM£¨$\frac{5-\sqrt{7}}{2}$£¬$\frac{-1+\sqrt{7}}{2}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬½âµÃH£¨$\frac{3-\sqrt{7}}{2}$£¬$\frac{\sqrt{7}+1}{2}$£©£¬
¡àµãPµÄºá×ø±êµÄ·¶Î§Îª$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®
¢Úµ±Ö±ÏßPG¾­¹ýF£¨4£¬0£©Ê±£¬
Ö±ÏßPGµÄ½âÎöʽΪy=-x-4£¬Í¬·¨¿ÉµÃµãPµÄºá×ø±êµÄÈ¡Öµ·¶Î§Îª$\frac{{7+\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{9+\sqrt{7}}}{2}$£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãPµÄºá×ø±êµÄÈ¡Öµ·¶Î§Îª$\frac{{7+\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{9+\sqrt{7}}}{2}$£¬$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®

µãÆÀ ±¾Ì⿼²éÒ»´Îº¯Êý×ÛºÏÌâ¡¢Ô²¡¢Ò»Ôª¶þ´Î·½³Ì×é¡¢¸ùµÄÅбðʽµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓø¨ÖúÔ²½â¾öÎÊÌ⣬ѧ»áÓÃת»¯µÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»áÓ÷½³Ì×é½â¾öÓйؽ»µãÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÇóÏÂÁк¯ÊýÖÐ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£®
£¨1£©y=$\frac{\sqrt{x+2}}{x^2-9}$£»
£¨2£©y=$\frac{3x}{2x+9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ä³³ÇÊм¸ÌõµÀ·µÄλÖùØϵÈçͼËùʾ£¬ÒÑÖªAB¡ÎCD£¬AEÓëABµÄ¼Ð½ÇΪ48¡ã£¬ÈôCFÓëEFµÄ³¤¶ÈÏàµÈ£¬Ôò¡ÏCµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®48¡ãB£®40¡ãC£®30¡ãD£®24¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èý½ÇÐεÄÖØÐÄÊÇ£¨¡¡¡¡£©
A£®Èý½ÇÐÎÈýÌõ±ßÉÏÖÐÏߵĽ»µãB£®Èý½ÇÐÎÈýÌõ±ßÉϸßÏߵĽ»µã
C£®Èý½ÇÐÎÈýÌõ±ß´¹Ö±Æ½·ÖÏߵĽ»µãD£®Èý½ÇÐÎÈýÌõÄÚ½Çƽ·ÖÏߵĽ»µã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÔÏÂÊǹØÓÚÕý¶à±ßÐεÄÃèÊö£º
¢ÙÕý¶à±ßÐεÄÿÌõ±ß¶¼ÏàµÈ£» ¢ÚÕý¶à±ßÐζ¼ÊÇÖá¶Ô³ÆͼÐΣ»
¢ÛÕý¶à±ßÐεÄÍâ½ÇºÍÊÇ360¡ã£»¢ÜÕý¶à±ßÐζ¼ÊÇÖÐÐĶԳÆͼÐΣ®
ÆäÖÐÕýÈ·µÄÃèÊöÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ù¢Ú¢ÜC£®¢Ú¢Û¢ÜD£®¢Ù¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÅ×ÎïÏßy=ax2+bx-3¾­¹ýA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã£¬ÓëyÖá½»ÓÚCµã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ¢Ù£¬Å×ÎïÏߵĶԳÆÖáÉÏÓÐÒ»µãP£¬ÇÒµãPÔÚxÖáÏ·½£¬Ï߶ÎPBÈƵãP˳ʱÕëÐýת90¡ã£¬µãBµÄ¶ÔÓ¦µãB¡äÇ¡ºÃÂäÔÚÅ×ÎïÏßÉÏ£¬ÇóµãPµÄ×ø±ê£®
£¨3£©Èçͼ¢Ú£¬Ö±Ïßy=$\frac{\sqrt{3}}{3}$x+$\frac{\sqrt{3}}{3}$½»Å×ÎïÏßÓÚA¡¢EÁ½µã£¬µãDΪÏ߶ÎAEÉÏÒ»µã£¬Á¬½ÓBD£¬ÓÐÒ»¶¯µãQ´ÓBµã³ö·¢£¬ÑØÏ߶ÎBDÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÔ˶¯µ½D£¬ÔÙÑØDEÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÔ˶¯µ½E£¬ÎÊ£ºÊÇ·ñ´æÔÚµãD£¬Ê¹µãQ´ÓµãBµ½EµÄÔ˶¯Ê±¼ä×îÉÙ£¿Èô´æÔÚ£¬ÇëÇó³öµãDµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¼ÆË㣨5$\sqrt{\frac{1}{5}}$-2$\sqrt{45}$£©¡Â£¨-$\sqrt{5}$£©µÄ½á¹ûΪ£¨¡¡¡¡£©
A£®5B£®-5C£®7D£®-7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èôµ¥Ïîʽ-5x4y2m+nÓë2017xm-ny2ÊÇͬÀàÏÔòm-7nµÄËãÊõƽ·½¸ùÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=5£¬AD=12£¬ÒÔBCΪб±ßÔÚ¾ØÐÎÍⲿ×÷Ö±½ÇÈý½ÇÐÎBEC£¬FΪCDµÄÖе㣬ÔòEFµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{433}}{2}$B£®$\frac{25}{4}$C£®$\frac{25}{2}$D£®$\frac{\sqrt{433}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸