精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,E是CD的中点,F是BC上一点,且BF=3CF.给出下列结论:①∠DAE=30°;②△ADE∽△AEF;③AE⊥EF;④△ABF∽△ECF.其中正确的个数为


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:根据已知首先证△FEC∽△EAD,通过观察发现两个三角形已经具备一组对应角相等,再利用两边对应成比例即可得出三角形相似,进而求出即可,再分别利用相似三角形的判定与解直角三角形的知识求出即可.
解答:∵正方形ABCD,E为CD中点,
∴CE=ED=DC=AD,
∴tan∠DAE==
∴∠DAE≠30°,故①∠DAE=30°错误;
∵正方形ABCD,E为CD中点,
∴CE=ED=DC.
∵BF=3FC,
∴FC= ED,CE=AD.
==
∵∠C=∠D=90°,
∴△FEC∽△EAD.
∴∠FEC=∠DAE,
∵∠DAE+∠DEA=90°
∴∠DEA+∠FEC=90°,
∴AE⊥EF.故③AE⊥EF正确;
假设正方形边长为4a,
∴FC=a,EC=2a,
∴EF=a,
∵DE=2a,AD=4a,
∴AE=2a,
==
∵∠AEF=∠D=90°,
∴△ADE∽△AEF,
故②△ADE∽△AEF正确;
=
=

∴△ABF与△ECF不相似,
故④△ABF∽△ECF错误.
故正确的有2个.
故选:B.
点评:此题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例是常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案