精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC的面积为18cm2,点D、E、F分别位于AB、BC、CA上.且AD=4cm,DB=5cm.如果△ABE的面积和四边形DBEF的面积相等,则△ABE的面积是(  )
A、8cm2B、9cm2C、10cm2D、12cm2
分析:本题由题意可知△ABE的面积和四边形DBEF的面积相等,可通过连接DE,DC的方法,证明出DE∥AC,进而求出△BDC的面积,然后即可求出答案.
解答:精英家教网解:连接DE,DC.
∵S四边形DBEF=S△ABE
∴S△ADE=S△FDE
∵两个三角形有公共底DE,且面积相等,
∴高相等,
∴DE∥AC
从而可得:S△ADE=S△CDE
∴S△ABE=S△BDC
又AD=4,DB=5∴S△BDC=
5
9
S△ABC
=10cm2
即S△ABE=10cm2
故应选:C.
点评:本题考查三角形面积性质的应用,可通过作辅助线的方法,做此题时注意理清各个三角形面积之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为
 
,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出
3
4
+
3
42
+
3
43
+…+
3
4n
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积为
2
,且AB=AC,将△ABC沿CA方向平移CA长度得到△EFA.
(1)试判断四边形BAEF的形状,并说明理由;
(2)若∠BEC=22.5°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,△ABC的面积为1,若把△ABC的各边分别延长一倍,得到一个新的△DEF,则S△DEF=
7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2,B2,C2,得到△A2B2C2.…按此规律,要使得到的三角形的面积超过2013,最少经过
4
4
次操作.

查看答案和解析>>

同步练习册答案