分析 (1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;
(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;
(3)先根据勾股定理求出AC,得出△ACE的面积=$\frac{1}{2}$AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=$\frac{1}{2}$AB•AC,代入数据即可得到结论.
解答 (1)证明:∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;
理由如下:
由(1)得:EO=FO,
又∵O是AC的中点,
∴AO=CO,
∴四边形CEAF是平行四边形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四边形CEAF是矩形;
(3)解:由(2)得:四边形CEAF是矩形,
∴∠AEC=90°,
∴AC=$\sqrt{A{E}^{2}+E{C}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
△ACE的面积=$\frac{1}{2}$AE×EC=$\frac{1}{2}$×3×4=6,
∵122+52=132,
即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴△ABC的面积=$\frac{1}{2}$AB•AC=$\frac{1}{2}$×12×5=30.
点评 本题考查了矩形的判定与性质、平行线的性质、角平分线、等腰三角形的判定、勾股定理以及面积的计算;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
试验次数 | 10 | 50 | 100 | 200 | 500 | 1000 | 2000 |
事件发生的频率 | 0.245 | 0.248 | 0.251 | 0.253 | 0.249 | 0.252 | 0.251 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
选修课程 | 所占百分比 |
A | a% |
B | 25% |
C | b% |
D | 20% |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{3}{4}$或1 | B. | $\frac{1}{4}$或1 | C. | $\frac{3}{4}$或$\frac{1}{2}$ | D. | $\frac{1}{4}$或$\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com