精英家教网 > 初中数学 > 题目详情
如图,△ABC是边长为4cm的等边三角形,AD为BC边上的高,点P沿BC向终点C运动,速度为1cm/s,点Q沿CA、AB向终点B运动,速度为2cm/s,若点P、Q两点同时出发,设它们的运动时间为x(s).
(l)求x为何值时,PQ⊥AC;x为何值时,PQ⊥AB?
(2)当O<x<2时,AD是否能平分△PQD的面积?若能,说出理由;
(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).
分析:(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解;
若使PQ⊥AB,则根据路程=速度×时间表示出BP,BQ的长,再根据30度的直角三角形的性质列方程求解;
(2)根据三角形的面积公式,要证明AD平分△PQD的面积,只需证明O是PQ的中点.根据题意可以证明BP=CN,则PD=DN,再根据平行线等分线段定理即可证明;
(3)根据(1)中求得的值即可分情况进行讨论.
解答:解:(1)当Q在AB上时,显然PQ不垂直于AC,
当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4-x;
∵AB=BC=CA=4,
∴∠C=60°;
若PQ⊥AC,则有∠QPC=30°,
∴PC=2CQ,
∴4-x=2×2x,
∴x=
4
5

当x=
4
5
(Q在AC上)时,PQ⊥AC;
如图:①
当PQ⊥AB时,BP=x,BQ=
1
2
x,AC+AQ=2x;
∵AC=4,
∴AQ=2x-4,
∴2x-4+
1
2
x=4,
∴x=
16
5

故x=
16
5
时PQ⊥AB;

(2)当0<x<2时,在Rt△QNC中,QC=2x,∠C=60°;
∴NC=x,
∴BP=NC,
∵BD=CD,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴AD∥QN,
∴OP=OQ,
∴S△PDO=S△DQO
∴AD平分△PQD的面积;

(3)显然,不存在x的值,使得以PQ为直径的圆与AC相离,
当x=
4
5
16
5
时,以PQ为直径的圆与AC相切,
当0≤x<
4
5
4
5
<x<
16
5
16
5
<x≤4时,以PQ为直径的圆与AC相交.
点评:此题综合运用了等边三角形的性质、直角三角形的性质以及直线和圆的位置关系求解.解题的关键是用动点的时间x和速度表示线段的长度,本题有一定的综合性,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是边长为a的等边三角形,O为△ABC的中心.将△ABC绕着中心O旋转120°.
①直接写出△ABC的内切圆半径r和外接圆半径R分别是多少?
②设点D、E、F分别在边AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,试画出△DEF,说明它的形状,并计算它的周长;
③根据“线动成面”的道理,△ABC的三条边AB、BC和CA在旋转过程中扫过的部分组成的平面图形的形状是什么?并计算出此图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•溧水县一模)如图,△ABC是边长为4的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连结BD,交AC于F.
(1)猜想BD与DE的位置关系,并证明你的结论;
(2)求△BDE的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湘潭)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.
(1)猜想AC与BD的位置关系,并证明你的结论;
(2)求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点做一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为
6
6

查看答案和解析>>

同步练习册答案