精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DCAB的延长线相交于点P,弦CE平分∠ACB,交ABF,连接BE

(1)求证:AC平分∠DAB

(2)求证:PCPF

(3)tanABCAB14,求线段PC的长.

【答案】(1)(2)证明见解析;(3)24.

【解析】

(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;
(2)由条件可得∠CAO=PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;
(3)易证△PAC∽△PCB,由相似三角形的性质可得到 ,又因为tan∠ABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.

(1)证明:∵PD切⊙O于点C,

∴OC⊥PD,

又∵AD⊥PD,

∴OC∥AD,

∴∠ACO=∠DAC.

∵OC=OA,

∴∠ACO=∠CAO,

∴∠DAC=∠CAO,

即AC平分∠DAB;

(2)证明:∵AD⊥PD,

∴∠DAC+∠ACD=90°.

又∵AB为⊙O的直径,

∴∠ACB=90°.

∴∠PCB+∠ACD=90°,

∴∠DAC=∠PCB.

又∵∠DAC=∠CAO,

∴∠CAO=∠PCB.

∵CE平分∠ACB,

∴∠ACF=∠BCF,

∴∠CAO+∠ACF=∠PCB+∠BCF,

∴∠PFC=∠PCF,

∴PC=PF;

(3)解:∵∠PAC=∠PCB,∠P=∠P,

∴△PAC∽△PCB,

又∵tan∠ABC=

设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,

∵PC2+OC2=OP2

∴(4k)2+72=(3k+7)2

∴k=6 (k=0不合题意,舍去).

∴PC=4k=4×6=24.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF1.6m,请你帮李航求出楼高AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过点(1,0),对称轴为.则下列结论:①;② ;③; ④.其中所有正确的结论是( )

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2.

(1)第一批饮料进货单价多少元?

(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的平面直角坐标系中,直线m上各点的横坐标都为1(记作直线x1),ABC三点的坐标分别为A(﹣23),B(﹣30),C(﹣12).

1)画出ABC关于直线x1对称的A1B1C1并写出A1B1C1的坐标.

2)若ABC内部有一点H(﹣2b),求点H关于直线xa对称的点H1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形中,,若分别是梯形各边的中点.

求证:四边形平行四边形;

当梯形满足什么条件时,四边形是菱形;

的条件下,梯形满足什么条件时,四边形是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1s2t之间的函数关系的图象。

1)求s2t之间的函数关系式;

2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值: 其中x的值从不等式组的整数解中选取.

查看答案和解析>>

同步练习册答案