精英家教网 > 初中数学 > 题目详情
直接写出结果:
(1)(
13
)-3
=
27
27
   
(2)(-a)10÷(-a)3=
-a7
-a7

(3)(-16x3-8x2+4x)÷(-2x)=
8x2+4x-2
8x2+4x-2
分析:(1)利用a-n=
1
an
(a≠0),即可求解;
(2)利用同底数的幂的除法法则即可求解;
(3)利用多项式与单项式的除法法则即可求解.
解答:解:(1)(
1
3
-3=
1
(
1
3
)3
=
1
1
27
=27;
(2)原式=(-a)7
=-a7

(3)原式=8x2+4x-2.
故答案是:27,-a7,8x2+4x-2.
点评:本题主要考查多项式除以单项式运算.多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图:等边三角形ABC的边长为1,P为AB边上的一个动点(不包括A、B),过P作PQ⊥BC于精英家教网Q,过Q作QR⊥AC于R,再过R作RS⊥AB于S.设AP=x,AS=y.
(1)求y与x之间的函数关系式,并写出自变量取值范围;
(2)若SP=
14
,求AP的长;
(3)若S、P重合点为T,试说明当P、S不重合时,P、S中的哪一个更接近T点?将上述操作,即按逆时针方向,过垂足作相邻边的垂线,若操作不断进行,试依据你的结论,猜想无论P的初始位置如何,P、S…等这些点最终将会出现怎样的趋势?(只要直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.
(1)求证:BD=AE.
(2)猜想:BD与DE、CE之间的关系,并证明你的猜想.
(3)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?直接写出结果不需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E
(1)试说明:BD=DE+CE.
(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;
(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为
 
秒(直接写出结果);
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=x-3,与x轴交于点A,与y轴交于点B;等腰直角△PQC中,PQ=PC;点P在x轴上,点Q在y轴上,点C在直线AB上,且位于点A的上方.
(1)如果点C的坐标为(5,m),求出点Q的坐标;
(2)如果点C的坐标为(x,y)(x>y),求出点Q的坐标;
(3)把直线AB向下平移b(b>0)个单位,请求出点Q的坐标(直接写出结果).

查看答案和解析>>

同步练习册答案