【题目】如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为 .
【答案】m+n
【解析】解:∵AB的垂直平分线MN交AC于点D,∠A=40°, ∴AD=BD,
∴∠A=∠ABD=40°,
∵∠DBC=30°,
∴∠ABC=40°+30°=70°,∠C=180°﹣40°﹣40°﹣30°=70°,
∴∠ABC=∠C,
∴AC=AB=m,
∴△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC=m+n,
所以答案是:m+n.
【考点精析】解答此题的关键在于理解三角形的内角和外角的相关知识,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角,以及对线段垂直平分线的性质的理解,了解垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
科目:初中数学 来源: 题型:
【题目】已知:如图,AB∥CD,∠A = ∠D,试说明 AC∥DE 成立的理由.
下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (两直线平行,内错角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代换)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】这个周末,七年级准备组织观看电影《我和我的祖国》,由各班班长负责买票,一班班长问售票员买团体票是否可以优惠,售票员说:50人以上的团体票有两个优惠方案可选择:
方案一:全体人员可打8折;
方案二:若打9折,有6人可以免票.
一班班长思考了一会儿,说我们班无论选择哪种方案要付的钱是一样的,请问一班有几人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,四边形ABCD是长方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8,AD=BC=6,D点与原点重合,坐标为(0,0).
(1)直接写出点B的坐标__________.
(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动,动点Q从点C出发以每秒4个单位长度的速度沿射线CD方向匀速运动,若P,Q两点同时出发,设运动时间为t秒,当t为何值时,PQ∥y轴?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生对三种国庆活动方案的意见,对该校学生进行了一次抽样调查(被调查学生至多赞成其中的一种方案),现将调查结果绘制成如图两幅不完整的统计图.
请根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了名学生;扇形统计图中方案1所对应的圆心角的度数为度;
(2)请把条形统计图补充完整;
(3)已知该校有1000名学生,试估计该校赞成方案1的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com