精英家教网 > 初中数学 > 题目详情

(本题12分)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.

1.(1)求证:△EGB是等腰三角形

2.(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小            度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。

 

【答案】

 

1.(1)略

2.(2)△ABC绕点F逆时针旋转最小30°时,四边形ACDE成为以ED为底的梯形,此梯形的高为

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题12分)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.

1.(1)求证:△EGB是等腰三角形

2.(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小           度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

﹣(本题12分)已知二次函数y=x2bxcx轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?

查看答案和解析>>

科目:初中数学 来源:2013届浙江建德李家镇初级中学九年级上学期期末考试数学试卷(带解析) 题型:解答题

(本题12分)已知两直线分别经过点A(3,0),点B(-1,0),并且当两直线同时相交于y负半轴的点C时,恰好有,经过点A、B、C的抛物线的对称轴与直线交于点D,如图所示。

(1)求抛物线的函数解析式;
(2)当直线绕点C顺时针旋转一个锐角时,它与抛物线的另一个交点为P(x,y),求四边形APCB面积S关于x的函数解析式,并求S的最大值;
(3)当直线绕点C旋转时,它与抛物线的另一个交点为P,请找出使△PCD为等腰三角形的点P,并求出点P的坐标。

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江建德李家镇初级中学九年级上学期期末考试数学试卷(解析版) 题型:解答题

(本题12分)已知两直线分别经过点A(3,0),点B(-1,0),并且当两直线同时相交于y负半轴的点C时,恰好有,经过点A、B、C的抛物线的对称轴与直线交于点D,如图所示。

(1)求抛物线的函数解析式;

(2)当直线绕点C顺时针旋转一个锐角时,它与抛物线的另一个交点为P(x,y),求四边形APCB面积S关于x的函数解析式,并求S的最大值;

(3)当直线绕点C旋转时,它与抛物线的另一个交点为P,请找出使△PCD为等腰三角形的点P,并求出点P的坐标。

 

查看答案和解析>>

同步练习册答案