精英家教网 > 初中数学 > 题目详情
已知六边形ABCDEF是中心对称图形,AB=1BC=2CD=3,那么EF=_______.

 

答案:2
提示:

六边形ABCDEF是中心对称图形,运用中心对称的性质。

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图①、②、③),先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度,并利用图③证明你的结论.
精英家教网
(2)将(1)中的“正△ABC”分别改为正方形ABCD(如图④)、正五边形ABCDE(如图⑤).正六边形ABCDEF(如图③)、…、正n边形ABCD…X(如图(n)),“点N是射线CA上任意一点”改为点N是射线CD上任意一点,其余条件不变,根据(1)的求解思路,分别推断∠BQM各等于多少度,将结论填入下表:精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)已知△ABC为正三角形,点M是BC上一点,点N是AC上一点,AM、BN相交于点Q,∠BAM=∠NBC,猜想∠BQM等于多少度,并证明你的猜想.
(2)将(1)中的“正△ABC”分别改为正方形ABCD、正五边形ABCDE、正六边形ABCDEF、正n边形ABCD…X,“点N是AC上一点”改为点N是CD上一点,其余条件不变,分别推断出∠BQM等于多少度,将结论填入下表:
正多边形 正方形 正五边形 正六边形 正n边形
∠BQM的度数
 
 
 
 
精英家教网

查看答案和解析>>

科目:初中数学 来源:2013年山东省青岛市中考数学模拟试卷(七)(解析版) 题型:解答题

(1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图①、②、③),先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度,并利用图③证明你的结论.

(2)将(1)中的“正△ABC”分别改为正方形ABCD(如图④)、正五边形ABCDE(如图⑤).正六边形ABCDEF(如图③)、…、正n边形ABCD…X(如图(n)),“点N是射线CA上任意一点”改为点N是射线CD上任意一点,其余条件不变,根据(1)的求解思路,分别推断∠BQM各等于多少度,将结论填入下表:

查看答案和解析>>

科目:初中数学 来源:2012年山东省济宁市曲阜市中考数学调研试卷(5月份)(解析版) 题型:解答题

(1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图①、②、③),先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度,并利用图③证明你的结论.

(2)将(1)中的“正△ABC”分别改为正方形ABCD(如图④)、正五边形ABCDE(如图⑤).正六边形ABCDEF(如图③)、…、正n边形ABCD…X(如图(n)),“点N是射线CA上任意一点”改为点N是射线CD上任意一点,其余条件不变,根据(1)的求解思路,分别推断∠BQM各等于多少度,将结论填入下表:

查看答案和解析>>

科目:初中数学 来源:2003年山东省泰安市中考数学试卷(解析版) 题型:解答题

(2003•泰安)(1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图①、②、③),先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度,并利用图③证明你的结论.

(2)将(1)中的“正△ABC”分别改为正方形ABCD(如图④)、正五边形ABCDE(如图⑤).正六边形ABCDEF(如图③)、…、正n边形ABCD…X(如图(n)),“点N是射线CA上任意一点”改为点N是射线CD上任意一点,其余条件不变,根据(1)的求解思路,分别推断∠BQM各等于多少度,将结论填入下表:

查看答案和解析>>

同步练习册答案