精英家教网 > 初中数学 > 题目详情
19.如图1,关于x的二次函数y=-x2+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.

分析 (1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;
(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB外角平分线上时,同理可求得P点坐标;
(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.

解答 解:
(1)∵二次函数y=-x2+bx+c经过点A(-3,0),点C(0,3),
∴$\left\{\begin{array}{l}{c=3}\\{-9-3b+c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-2}\\{c=3}\end{array}\right.$,
∴抛物线的解析式y=-x2-2x+3,
(2)存在,
当P在∠DAB的平分线上时,如图1,作PM⊥AD,

设P(-1,m),则PM=PD•sin∠ADE=$\frac{\sqrt{5}}{5}$(4-m),PE=m,
∵PM=PE,
∴$\frac{\sqrt{5}}{5}$(4-m)=m,m=$\sqrt{5}$-1,
∴P点坐标为(-1,$\sqrt{5}$-1);
当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,

设P(-1,n),则PN=PD•sin∠ADE=$\frac{\sqrt{5}}{5}$(4-n),PE=-n,
∵PN=PE,
∴$\frac{\sqrt{5}}{5}$(4-n)=-n,n=-$\sqrt{5}$-1,
∴P点坐标为(-1,-$\sqrt{5}$-1);
综上可知存在满足条件的P点,其坐标为(-1,$\sqrt{5}$-1)或(-1,-$\sqrt{5}$-1);
(3)∵抛物线的解析式y=-x2-2x+3,
∴B(1,0),
∴S△EBC=$\frac{1}{2}$EB•OC=3,
∵2S△FBC=3S△EBC
∴S△FBC=$\frac{9}{2}$,
过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,

∵S△FBC=S△BQH-S△BFH-S△CFQ=$\frac{1}{2}$HB•HQ-$\frac{1}{2}$BH•HF-$\frac{1}{2}$QF•FM=$\frac{1}{2}$BH(HQ-HF)-$\frac{1}{2}$QF•FM=$\frac{1}{2}$BH•QF-$\frac{1}{2}$QF•FM=$\frac{1}{2}$QF•(BH-FM)=$\frac{1}{2}$FQ•OB=$\frac{1}{2}$FQ=$\frac{9}{2}$,
∴FQ=9,
∵BC的解析式为y=-3x+3,
设F(x0,-x02-2x0+3),
∴-3x0+3+x02+2x0-3=9,
解得:x0=$\frac{1-\sqrt{37}}{2}$或$\frac{1+\sqrt{37}}{2}$(舍去),
∴点F的坐标是($\frac{1-\sqrt{37}}{2}$,$\frac{3\sqrt{37}-15}{2}$),
∵S△ABC=6>$\frac{9}{2}$,
∴点F不可能在A点下方,
综上可知F点的坐标为($\frac{1-\sqrt{37}}{2}$,$\frac{3\sqrt{37}-15}{2}$).

点评 本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意分点P在∠DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键.本题所考查知识点较多,综合性很强,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则CE的长为(  )
A.9B.15C.12D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:
①当x>0时,y>0;
②若a=-1,则b=4;
③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2
④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6$\sqrt{2}$.
其中真命题的序号是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为55°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为(  )
A.60°B.50°C.40°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.设x1,x2是一元二次方程x2-2x-3=0的两根,则x12+x22=(  )
A.6B.8C.10D.12

查看答案和解析>>

同步练习册答案